Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 710: 149910, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38593619

ABSTRACT

Ginsenoside Rb1 (Rb1), an active component isolated from traditional Chinese medicine Ginseng, is beneficial to many cardiovascular diseases. However, whether it can protect against doxorubicin induced cardiotoxicity (DIC) is not clear yet. In this study, we aimed to investigate the role of Rb1 in DIC. Mice were injected with a single dose of doxorubicin (20 mg/kg) to induce acute cardiotoxicity. Rb1 was given daily gavage to mice for 7 days. Changes in cardiac function, myocardium histopathology, oxidative stress, cardiomyocyte mitochondrion morphology were studied to evaluate Rb1's function on DIC. Meanwhile, RNA-seq analysis was performed to explore the potential underline molecular mechanism involved in Rb1's function on DIC. We found that Rb1 treatment can improve survival rate and body weight in Dox treated mice group. Rb1 can attenuate Dox induced cardiac dysfunction and myocardium hypertrophy and interstitial fibrosis. The oxidative stress increase and cardiomyocyte mitochondrion injury were improved by Rb1 treatment. Mechanism study found that Rb1's beneficial role in DIC is through suppressing of autophagy and ferroptosis. This study shown that Ginsenoside Rb1 can protect against DIC by regulating autophagy and ferroptosis.


Subject(s)
Cardiotoxicity , Ferroptosis , Ginsenosides , Animals , Mice , Apoptosis/drug effects , Autophagy/drug effects , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Cardiotoxicity/prevention & control , Doxorubicin/adverse effects , Doxorubicin/toxicity , Ginsenosides/pharmacology , Myocytes, Cardiac/metabolism , Oxidative Stress
2.
Stem Cell Res ; 67: 103040, 2023 03.
Article in English | MEDLINE | ID: mdl-36796252

ABSTRACT

The transient receptor potential cation channel subfamily M member 8 (TRPM8) is a kind of non-selective cation channel which controls Ca2+ homeostasis. Mutations in TRPM8 were related to dry eye diseases (DED). Here we constructed a TRPM8 knockout cell line WAe009-A-A from the original embryonic stem cell line H9 using CRISPR/Cas9 technology, which maybe helpful for exploring the pathogenesis of DED. WAe009-A-A cells possess stem cell morphology and pluripotency as well as normal karyotype, and have the ability of differentiating into three germ layers in vitro.


Subject(s)
Human Embryonic Stem Cells , Humans , Cell Line , CRISPR-Cas Systems , Human Embryonic Stem Cells/metabolism , Karyotype
3.
Polymers (Basel) ; 14(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36501459

ABSTRACT

In order to develop a bio-based epoxy resin with high mechanical and thermal performance, cork particles and nanocellulose were introduced into the rosin-based epoxy resin to improve the toughness, stiffness and thermal stability. The flexural properties of the epoxy composites indicated that the strength and modulus were reduced when the content of cork particles was relatively high (>3%) due to the low stiffness and modulus of cork itself. However, the flexural performance was significantly improved after the addition of 1% nanocellulose. In contrast to the flexural properties, the impact toughness results showed the synergistic toughening effects of nanocellulose and cork particles on the rosin-based epoxy resin. The highest impact toughness of 13.35 KJ/m2 was found in the epoxy composite with 1% cellulose nanofibers and 3% cork particles, an increase of 149.07% compared to the neat epoxy. Cork particle size also had a significant effect on the mechanical properties of the composites. Both the flexural and impact results showed first a rise and then a fall with a decrease in the cork size. TGA results indicated cork particles and nanocellulose could have a synergistic enhancing effect on the thermal stability of the rosin-based epoxy resin. This work can add value to rosin and cork waste and widen the industrial applications of the epoxy resin.

SELECTION OF CITATIONS
SEARCH DETAIL
...