Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Translat ; 46: 103-115, 2024 May.
Article in English | MEDLINE | ID: mdl-38841339

ABSTRACT

Background: Reactive oxygen species (ROS), predominantly generated by mitochondria, play a crucial role in the pathogenesis of intervertebral disc degeneration (IVDD). Reduction of ROS levels may be an effective strategy to delay IVDD. In this study, we assessed whether umbilical cord mesenchymal stem cell-exosomes (UCMSC-exos) can be used to treat IVDD by suppressing ROS production caused by mitochondrial dysfunction. Materials and methods: Human UCMSC-exos were isolated and identified. Nucleus pulposus cells (NPCs) were stimulated with H2O2 in the presence or absence of exosomes. Then, 4D label free quantitative (4D-LFQ) proteomics were used to analyze the differentially expressed (DE) proteins. Mitochondrial membrane potential (MMP), mitochondrial ROS and protein levels were determined via immunofluorescence staining, flow cytometry and western blotting respectively. Additionally, high-throughput sequencing was performed to identify the DE miRNAs in NPCs. Finally, therapeutic effects of UCMSC-exos were investigated in a puncture-induced IVDD rat model. Degenerative grades of rat IVDs were assessed using magnetic resonance imaging and histochemical staining. Results: UCMSC-exos effectively improved the viability of NPCs and restored the expression of the extracellular matrix (ECM) proteins, collagen type II alpha-1 (COL2A1) and matrix metalloproteinase-13 induced by H2O2. Additionally, UCMSC-exos not only reduced the total intracellular ROS and mitochondrial superoxide levels, but also increased MMP in pathological NPCs. 4D-LFQ proteomics and western blotting further revealed that UCMSC-exos up-regulated the levels of the mitochondrial protein, mitochondrial transcription factor A (TFAM), in H2O2-induced NPCs. High-throughput sequencing and qRT-PCR uncovered that UCMSC-exos down-regulated the levels of miR-194-5p, a potential negative regulator of TFAM, induced by H2O2. Finally, in vivo results showed that UCMSC-exos injection improved the histopathological structure and enhanced the expression levels of COL2A1 and TFAM in the rat IVDD model. Conclusions: Our findings suggest that UCMSC-exos promote ECM synthesis, relieve mitochondrial oxidative stress, and attenuate mitochondrial dysfunction in vitro and in vivo, thereby effectively treating IVDD. The translational potential of this article: This study provides solid experimental data support for the therapeutic effects of UCMSC-exos on IVDD, suggesting that UCMSC-exos will be a promising nanotherapy for IVDD.

2.
PLoS One ; 19(2): e0299328, 2024.
Article in English | MEDLINE | ID: mdl-38394085

ABSTRACT

At this stage, there are many dust-hazardous industries, and occupational pneumoconiosis has a high incidence for a long time. To solve the dust pollution problem in coal processing plant workshops, the dust particle field and liquid droplet particle field were numerically simulated using computational fluid dynamics (CFD), and the influences of the induced airflow and corridor wind speed on the internal airflow field of the workshop were investigated to derive the dust pollution mechanism in the coal plant workshop under the change in the wind flow field. In this study, it was shown that the wind flow rate in the coal processing plant workshop is mainly affected by the corridor wind speed, and the higher the corridor wind speed is, the higher the wind flow rate. The induced airflow mainly affected the direction of the wind flow field in the workshop. According to the conclusions obtained from the simulations, a spray dust reduction system was designed for the coal processing plant workshop and applied in the Huangyuchuan coal processing plant. On-site measurement revealed that the dust reduction effect inside the coal processing plant workshop is obvious, and the overall dust reduction efficiency in the workshop reaches more than 94%, which meets the requirements of environmentally sustainable development and clean production.


Subject(s)
Coal Mining , Pneumoconiosis , Humans , Dust/analysis , Environmental Pollution , Coal/analysis
3.
Cells ; 11(24)2022 12 07.
Article in English | MEDLINE | ID: mdl-36552720

ABSTRACT

Microglia play a vital role in neurodegenerative diseases. However, the effects of microglia-derived exosomes on neuronal cells are poorly understood. This study aimed to explore the role of M1-polarized microglia exosomes in neuronal cells by transcriptome analysis. Exosomes isolated from resting M0-phenotype BV2 (M0-BV2) microglia and M1-polarized BV2 (M1-BV2) microglia were analyzed using high-throughput sequencing of the transcriptome. Differentially expressed genes (DEGs) between the two types of exosomes were identified by analyzing the sequencing data. The biological functions and pathways regulated by the identified DEGs were then identified using bioinformatics analyses. Finally, we evaluated the effects of exosomes on neuronal cells by coculturing M0-BV2 and M1-BV2 exosomes with primary neuronal cells. Enrichment analyses revealed that DEGs were significantly enriched in the ferroptosis pathway (p = 0.0137). M0-BV2 exosomes had no distinct effects on ferroptosis in neuronal cells, whereas M1-BV2 exosomes significantly reduced ferroptosis suppressor proteins (GPX4, SLC7A11, and FTH1) and elevated the levels of intracellular and mitochondrial ferrous iron and lipid peroxidation in neuronal cells. Polarized M1-BV2 microglia exosomes can induce ferroptosis in neuronal cells, thereby aggravating neuronal damage. Taken together, these findings enhance knowledge of the pathogenesis of neurological disorders and suggest potential therapeutic targets against neurodegenerative diseases.


Subject(s)
Exosomes , Ferroptosis , Microglia/metabolism , Exosomes/metabolism , Ferroptosis/genetics , Neurons/metabolism , Gene Expression Profiling
4.
Genes (Basel) ; 13(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-36140770

ABSTRACT

Polarized microglia play a vital role in neurodegenerative diseases. However, the effects of polarized microglia-derived small extracellular vesicles (SEVs) on neuronal cells and the regulatory mechanisms of circular RNAs (circRNAs) in SEVs remain incompletely defined. In the present study, we carried out high-throughput sequencing and differential expression analysis of circRNAs in the SEVs of M0-phenotype BV2 microglia (M0-BV2) and polarized M1-phenotype BV2 microglia (M1-BV2). Hub circRNAs in the SEVs and their functions were screened using multiple bioinformatics methods. We further validated the effects of SEVs on neuronal PC12 cells by co-culturing M0-BV2 SEVs and M1-BV2 SEVs with neuronal PC12 cells. Among the differentially expressed circRNAs, the target mRNAs of six hub circRNAs (circ_0000705, circ_0001313, circ_0000229, circ_0001123, circ_0000621, and circ_0000735) were enriched in apoptosis-related biological processes. Furthermore, western blot and flow cytometry analysis demonstrated that M0-BV2 SEVs had no distinct effect on apoptosis of neuronal PC12 cells, while M1-BV2 SEVs remarkably increased the apoptosis of neuronal PC12 cells. We then constructed the competing endogenous RNA (ceRNA) networks of the six hub circRNAs. Taken together, the results suggest that polarized M1-BV2 microglia can induce apoptosis of neuronal PC12 cells through secreted SEVs, and this regulatory effect may be achieved by the circRNAs circ_0000705, circ_0001313, circ_0000229, circ_0001123, circ_0000621, and circ_0000735 through ceRNAs regulatory networks. These findings provide new potential targets for the treatment of neurodegenerative diseases.


Subject(s)
Extracellular Vesicles , RNA, Circular , Animals , Apoptosis/genetics , Extracellular Vesicles/genetics , Microglia , PC12 Cells , RNA/genetics , RNA, Circular/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...