Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Chin J Integr Med ; 30(1): 62-74, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882911

ABSTRACT

Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Neoplasms , Sesquiterpenes , Humans , Retrospective Studies , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use
3.
Neurooncol Adv ; 4(1): vdab184, 2022.
Article in English | MEDLINE | ID: mdl-35118381

ABSTRACT

BACKGROUND: Hypoxia is a prominent feature of solid tumors and can function as fertile environment for oncolytic anaerobic bacteria such as Clostridium novyi-NT (C. novyi-NT) where it can induce tumor destruction in mice and patients. However, two major obstacles have limited its use, namely the host inflammatory response and the incomplete clearance of normoxic tumor areas. METHODS: In this study, we first used a subcutaneous tumor model of a glioblastoma (GBM) cell line in immunocompetent mice to investigate the local distribution of tumor hypoxia, kinetics of C. novyi-NT germination and spread, and the local host immune response. We subsequently applied the acquired knowledge to develop a C. novyi-NT therapy in an orthotopic rabbit brain tumor model. RESULTS: We found that local accumulation of granular leukocytes, mainly neutrophils, could impede the spread of bacteria through the tumor and prevent complete oncolysis. Depletion of neutrophils via anti-Ly6G antibody or bone marrow suppression using hydroxyurea significantly improved tumor clearance. We then applied this approach to rabbits implanted with an aggressive intracranial brain tumor and achieved long-term survival in majority of the animals without apparent toxicity. CONCLUSION: These results indicated that depleting neutrophils can greatly enhance the safety and efficacy of C. novyi-NT cancer therapy for brain tumors.

5.
Am J Cancer Res ; 12(12): 5484-5499, 2022.
Article in English | MEDLINE | ID: mdl-36628286

ABSTRACT

ß-Elemene, a compound extracted from Chinese herb Curcuma wenyujin, has been demonstrated with antitumor effects in various cancers, including glioblastoma (GBM), a primary brain tumor with high morbidity and mortality. In this study, we reported a bisamino derivative of ß-Elemene, 2, 2'-((1R, 3R, 4S)-4-methyl-4-vinylcyclohexane-1, 3-diyl) bis(prop-2-en-1-amine) (compound 1), displayed a better anti-GBM effect than ß-Elemene with lower concentration. GBM cell lines (C6 and U87) were treated with compound 1 and subsequently analyzed by several assays. Compound 1 significantly inhibited the migration of C6 and U87 cells based on wound healing assay, transwell assay and inverted migration assay. Furthermore, colony formation assay, immunostaining and flow cytometry assays revealed that compound 1 significantly inhibited the proliferation of GBM cells. In addition, compound 1 induced the apoptosis of GBM cells. Mechanistically, we found Yes-associated protein (YAP) was down-regulated in compound 1-treated GBM cells, and the overexpression of YAP partially rescued the anti-GBM effects of compound 1. Finally, compound 1 suppresses the GBM growth in xenograft model through inactivation YAP signaling. Taken together, these results reveal that a novel derivative of ß-Elemene, compound 1, exhibits more potent anti-GBM activity than ß-Elemene through inactivating YAP signaling pathway, which will provide novel strategies for the treatment of GBM.

6.
Environ Sci Pollut Res Int ; 28(48): 68804-68816, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34279779

ABSTRACT

The natural grasslands in northern China have been seriously degraded due mainly to overgrazing and climate change in recent decades, leading to shortage of forage supply to animal husbandry. To maximize forage production, we developed a two-harvest regime of oat forage by sowing in spring in an alpine region of Hulun Buir, northern China, using two oat early maturation species. The agronomic characteristics and forage quality of the two-harvest regime were evaluated across three constructive years from 2017 to 2019. Compared to the traditional one-harvest regime, the production, resource use efficiency, and economic benefits were compared and quantified for both oat species across the 3 years. Dry weight forage by the two-harvest regime was increased by 17.5-18.5%, while crude protein was increased by 25.1-30.0%. Growing days by the two-harvest regime was increased by 36.7% on average, nitrogen fertilizer use efficiency was enhanced by 25.1-30.0%, while water use efficiency was not significantly changed. The two-harvest regime also increased the net profit by 28.0%. Taken together, our results reveal that the two-harvest regime of forage production in the cold region of northern China is a promising practice with high forage yield, nutritional value, and nitrogen fertilizer use efficiency as well as economic profit.


Subject(s)
Avena , Fertilizers , Animals , China , European Alpine Region , Nutritive Value , Seasons
7.
Sci Rep ; 11(1): 6517, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753770

ABSTRACT

Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor and an oncogene product, which plays a pivotal role in tumor progression. Therefore, targeting persistent STAT3 signaling directly is an attractive anticancer strategy. The aim of this study is to test the efficacy of a novel STAT3 small molecule inhibitor, LLL12B, in suppressing medulloblastoma cells in vitro and tumor growth in vivo. LLL12B selectively inhibited the induction of STAT3 phosphorylation by interleukin-6 but not induction of STAT1 phosphorylation by INF-γ. LLL12B also induced apoptosis in human medulloblastoma cells. In addition, LLL12B exhibited good oral bioavailability in vivo and potent suppressive activity in tumor growth of medulloblastoma cells in vivo. Besides, combining LLL12B with cisplatin showed greater inhibition of cell viability and tumorsphere formation as well as induction of apoptosis comparing to single agent treatment in medulloblastoma cells. Furthermore, LLL12B and cisplatin combination exhibited greater suppression of medulloblastoma tumor growth than monotherapy in vivo. The present study supported that LLL12B is a novel therapeutic agent for medulloblastoma and the combination of LLL12B with a chemotherapeutic agent cisplatin may be an effective approach for medulloblastoma therapy.


Subject(s)
Anthraquinones/pharmacology , Interferon-gamma/genetics , Medulloblastoma/drug therapy , STAT1 Transcription Factor/genetics , STAT3 Transcription Factor/genetics , Sulfonamides/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , Heterografts , Humans , Interleukin-6/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Phosphorylation/drug effects
8.
Br J Cancer ; 124(9): 1566-1580, 2021 04.
Article in English | MEDLINE | ID: mdl-33658640

ABSTRACT

BACKGROUND: MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. METHODS: We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. RESULTS: MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. CONCLUSIONS: Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.


Subject(s)
Biomarkers, Tumor/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Gene Expression Regulation, Neoplastic , Neurofibrosarcoma/pathology , STAT3 Transcription Factor/metabolism , Adolescent , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Female , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neurofibrosarcoma/genetics , Neurofibrosarcoma/metabolism , Prognosis , STAT3 Transcription Factor/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Neurooncol Adv ; 3(1): vdaa154, 2021.
Article in English | MEDLINE | ID: mdl-33506200

ABSTRACT

BACKGROUND: Mebendazole is an anthelmintic drug introduced for human use in 1971 that extends survival in preclinical models of glioblastoma and other brain cancers. METHODS: A single-center dose-escalation and safety study of mebendazole in 24 patients with newly diagnosed high-grade gliomas in combination with temozolomide was conducted. Patients received mebendazole in combination with adjuvant temozolomide after completing concurrent radiation plus temozolomide. Dose-escalation levels were 25, 50, 100, and 200 mg/kg/day of oral mebendazole. A total of 15 patients were enrolled at the highest dose studied of 200 mg/kg/day. Trough plasma levels of mebendazole were measured at 4, 8, and 16 weeks. RESULTS: Twenty-four patients (18 glioblastoma and 6 anaplastic glioma) were enrolled with a median age of 49.8 years. Four patients (at 200 mg/kg) developed elevated grade 3 alanine aminotransferase (ALT) and/or aspartate transaminase (AST) after 1 month, which reversed with lower dosing or discontinuation. Plasma levels of mebendazole were variable but generally increased with dose. Kaplan-Meier analysis showed a 21-month median overall survival with 41.7% of patients alive at 2 years and 25% at 3 and 4 years. Median progression-free survival (PFS) from the date of diagnosis for 17 patients taking more than 1 month of mebendazole was 13.1 months (95% confidence interval [CI]: 8.8-14.6 months) but for 7 patients who received less than 1 month of mebendazole PFS was 9.2 months (95% CI: 5.8-13.0 months). CONCLUSION: Mebendazole at doses up to 200 mg/kg demonstrated long-term safety and acceptable toxicity. Further studies are needed to determine mebendazole's efficacy in patients with malignant glioma.

10.
Genes (Basel) ; 11(7)2020 07 08.
Article in English | MEDLINE | ID: mdl-32650362

ABSTRACT

Patients with RASopathy Neurofibromatosis 1 (NF1) are at a markedly increased risk of the development of benign and malignant tumors. Malignant tumors are often recalcitrant to treatments and associated with poor survival; however, no chemopreventative strategies currently exist. We thus evaluated the effect of mebendazole, alone or in combination with cyclooxygenase-2 (COX-2) inhibitors, on the prevention of NF1-related malignancies in a cisNf1+/-;Tp53+/- (NPcis) mouse model of NF1. Our in vitro findings showed that mebendazole (MBZ) inhibits the growth of NF1-related malignant peripheral nerve sheath tumors (MPNSTs) through a reduction in activated guanosine triphosphate (GTP)-bound Ras. The daily MBZ treatment of NPcis mice dosed at 195 mg/kg daily, initiated 60 days after birth, substantially delayed the formation of solid malignancies and increased median survival (p < 0.0001). Compared to placebo-treated mice, phosphorylated extracellular signal-regulated kinase (pERK) levels were decreased in the malignancies of MBZ-treated mice. The combination of MBZ with COX-2 inhibitor celecoxib (CXB) further enhanced the chemopreventative effect in female mice beyond each drug alone. These findings demonstrate the feasibility of a prevention strategy for malignancy development in high-risk NF1 individuals.


Subject(s)
Antineoplastic Agents/therapeutic use , Mebendazole/therapeutic use , Nerve Sheath Neoplasms/prevention & control , Neurofibromatosis 1/genetics , Animals , Antineoplastic Agents/administration & dosage , Celecoxib/administration & dosage , Celecoxib/therapeutic use , Cell Line, Tumor , Chemoprevention , Cyclooxygenase 2 Inhibitors/administration & dosage , Cyclooxygenase 2 Inhibitors/therapeutic use , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Male , Mebendazole/administration & dosage , Mice , Mice, Inbred C57BL , Nerve Sheath Neoplasms/genetics , Neurofibromatosis 1/pathology , Neurofibromin 1/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics , ras Proteins/metabolism
12.
ACS Omega ; 5(2): 1109-1119, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31984267

ABSTRACT

DNA molecular compaction/decompaction is of great significance for the exploration of basic life processes, the research of biomedical and genetic engineering, and so forth. However, the detailed mechanism of DNA compaction/decompaction caused by surfactants remains an open and challenging problem that has not been fully solved so far. In this paper, a sort of novel solid substrate, nanoPAA-ZnCl2-AuLs, with good stability and high sensitivity, was prepared by a self-assembly method. Based on this substrate, the surface-enhanced Raman scattering (SERS) technology was employed to investigate characteristics of interactions between DNA molecules and surfactants at a single molecular level. SERS spectra of calf thymus DNA (ctDNA), cetyl trimethyl ammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) with a concentration as low as 10-9 M, and SERS spectra of ctDNA-CTAB and ctDNA-CTAB-SDS composites were collected, respectively. The interactions between ctDNA and surfactants were analyzed by changes in SERS spectra, for example, disappearances and appearances of SERS bands and relative changes of peak intensity, in which CTAB resulted in the compaction of the DNA molecule while SDS induced the decompaction of the ctDNA-CTAB complex. Moreover, UV-visible spectrophotometry was employed to demonstrate the compaction/decompaction of ctDNA molecules caused by surfactants. The local binding modes of ctDNA molecules and surfactant molecules were expounded. This work will be helpful for understanding biological processes such as DNA compaction and recombination within nucleus or/and cells and for the development of gene therapy technologies.

13.
Gene Ther ; 26(6): 277-286, 2019 06.
Article in English | MEDLINE | ID: mdl-31127187

ABSTRACT

Neurofibromatosis type 1, including the highly aggressive malignant peripheral nerve sheath tumors (MPNSTs), is featured by the loss of functional neurofibromin 1 (NF1) protein resulting from genetic alterations. A major function of NF1 is suppressing Ras activities, which is conveyed by an intrinsic GTPase-activating protein-related domain (GRD). In this study, we explored the feasibility of restoring Ras GTPase via exogenous expression of various GRD constructs, via gene delivery using a panel of adeno-associated virus (AAV) vectors in MPNST and human Schwann cells (HSCs). We demonstrated that several AAV serotypes achieved favorable transduction efficacies in those cells and a membrane-targeting GRD fused with an H-Ras C-terminal motif (C10) dramatically inhibited the Ras pathway and MPNST cells in a NF1-specific manner. Our results opened up a venue of gene replacement therapy in NF1-related tumors.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Neurofibromatosis 1/therapy , Neurofibromin 1/genetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Feasibility Studies , Genetic Vectors/genetics , Humans , Neurofibromin 1/chemistry , Neurofibromin 1/metabolism , Protein Domains , Schwann Cells/metabolism , ras Proteins/genetics , ras Proteins/metabolism
14.
Acta Physiol (Oxf) ; 225(2): e13177, 2019 02.
Article in English | MEDLINE | ID: mdl-30136377

ABSTRACT

AIMS: Clinical trials have shown the beneficial effects of exercise training against pulmonary fibrosis. This study aimed to investigate whether prophylactic intervention with exercise training attenuates lung fibrosis via modulating endogenous hydrogen sulphde (H2 S) generation. METHODS: First, ICR mice were allocated to Control, Bleomycin, Exercise, and Bleomycin + Exercise groups. Treadmill exercise began on day 1 and continued for 4 weeks. A single intratracheal dose of bleomycin (3 mg/kg) was administered on day 15. Second, ICR mice were allocated to Control, Bleomycin, H2 S, and Bleomycin + H2 S groups. H2 S donor NaHS (28 µmol/kg) was intraperitoneally injected once daily for 2 weeks. RESULTS: Bleomycin-treated mice exhibited increased levels of collagen deposition, hydroxyproline, collagen I, transforming growth factor (TGF)-ß1, Smad2/Smad3/low-density lipoprotein receptor-related proteins (LRP-6)/glycogen synthase kinase-3ß (GSK-3ß) phosphorylation, and Smad4/ß-catenin expression in lung tissues (P < 0.01), which was alleviated by exercise training (P < 0.01 except for Smad4 and phosphorylated GSK-3ß: P < 0.05). Bleomycin-induced lung fibrosis was associated with increased α smooth muscle actin (α-SMA) and decreased E-cadherin expression (P < 0.01). Double immunofluorescence staining showed the co-localization of E-cadherin/α-SMA, indicating epithelial-mesenchymal transition (EMT) formation, which was ameliorated by exercise training. Moreover, exercise training restored bleomycin-induced downregulation of cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) expression, as well as H2 S generation in lung tissue (P < 0.01). NaHS treatment attenuated bleomycin-induced TGF-ß1 production, activation of LRP-6/ß-catenin signalling, EMT and lung fibrosis (P < 0.01 except for ß-catenin: P < 0.05). CONCLUSION: Exercise training restores bleomycin-induced downregulation of pulmonary CBS/CSE expression, thus contributing to the increased H2 S generation and suppression of TGF-ß1/Smad and LRP-6/ß-catenin signalling pathways, EMT and lung fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Physical Conditioning, Animal , Pulmonary Fibrosis/prevention & control , Sulfites/metabolism , Animals , Bleomycin , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Male , Mice , Mice, Inbred ICR , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Signal Transduction , Transforming Growth Factor beta1/metabolism , beta Catenin/metabolism
15.
Nature ; 564(7735): 273-277, 2018 12.
Article in English | MEDLINE | ID: mdl-30542164

ABSTRACT

Cytokine release syndrome (CRS) is a life-threatening complication of several new immunotherapies used to treat cancers and autoimmune diseases1-5. Here we report that atrial natriuretic peptide can protect mice from CRS induced by such agents by reducing the levels of circulating catecholamines. Catecholamines were found to orchestrate an immunodysregulation resulting from oncolytic bacteria and lipopolysaccharide through a self-amplifying loop in macrophages. Myeloid-specific deletion of tyrosine hydroxylase inhibited this circuit. Cytokine release induced by T-cell-activating therapeutic agents was also accompanied by a catecholamine surge and inhibition of catecholamine synthesis reduced cytokine release in vitro and in mice. Pharmacologic catecholamine blockade with metyrosine protected mice from lethal complications of CRS resulting from infections and various biotherapeutic agents including oncolytic bacteria, T-cell-targeting antibodies and CAR-T cells. Our study identifies catecholamines as an essential component of the cytokine release that can be modulated by specific blockers without impairing the therapeutic response.


Subject(s)
Catecholamines/antagonists & inhibitors , Catecholamines/metabolism , Cytokines/adverse effects , Syndrome , Animals , Atrial Natriuretic Factor/pharmacology , CD3 Complex/antagonists & inhibitors , Catecholamines/biosynthesis , Cytokines/immunology , Epinephrine/metabolism , Female , Humans , Immunotherapy, Adoptive , In Vitro Techniques , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Norepinephrine/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , alpha-Methyltyrosine/pharmacology
16.
Front Microbiol ; 9: 2566, 2018.
Article in English | MEDLINE | ID: mdl-30483220

ABSTRACT

Straw returns to the soil is an effective way to improve soil organic carbon and reduce air pollution by straw burning, but this may increase CH4 and N2O emissions risks in paddy soils. Biochar has been used as a soil amendment to improve soil fertility and mitigate CH4 and N2O emissions. However, little is known about their interactive effect on CH4 and N2O emissions and the underlying microbial mechanisms. In this study, a 2-year pot experiment was conducted on two paddy soil types (an acidic Utisol, TY, and an alkaline Inceptisol, BH) to evaluate the influence of straw and biochar applications on CH4 and N2O emissions, and on related microbial functional genes. Results showed that straw addition markedly increased the cumulative CH4 emissions in both soils by 4.7- to 9.1-fold and 23.8- to 72.4-fold at low (S1) and high (S2) straw input rate, respectively, and significantly increased mcrA gene abundance. Biochar amendment under the high straw input (BS2) significantly decreased CH4 emissions by more than 50% in both soils, and increased both mcrA gene and pmoA gene abundances, with greatly enhanced pmoA gene and a decreased mcrA/pmoA gene ratio. Moreover, methanotrophs community changed distinctly in response to straw and biochar amendment in the alkaline BH soil, but showed slight change in the acidic TY soil. Straw had little effect on N2O emissions at low input rate (S1) but significantly increased N2O emissions at the high input rate (S2). Biochar amendment showed inconsistent effect on N2O emissions, with a decreasing trend in the BH soil but an increasing trend in the TY soil in which high ammonia existed. Correspondingly, increased nirS and nosZ gene abundances and obvious community changes in nosZ gene containing denitrifiers in response to biochar amendment were observed in the BH soil but not in the TY soil. Overall, our results suggested that biochar amendment could markedly mitigate the CH4 and N2O emissions risks under a straw return practice via regulating functional microbes and soil physicochemical properties, while the performance of this practice will vary depending on soil parent material characteristics.

17.
Microb Ecol ; 75(4): 1009-1023, 2018 May.
Article in English | MEDLINE | ID: mdl-29124311

ABSTRACT

Climate change is projected to have impacts on precipitation and temperature regimes in drylands of high elevation regions, with especially large effects in the Qinghai-Tibetan Plateau. However, there was limited information about how the projected climate change will impact on the soil microbial community and their activity in the region. Here, we present results from a study conducted across 72 soil samples from 24 different sites along a temperature and precipitation gradient (substituted by aridity index ranging from 0.079 to 0.89) of the Plateau, to assess how changes in aridity affect the abundance, community composition, and diversity of bacteria, ammonia-oxidizers, and denitrifers (nirK/S and nosZ genes-containing communities) as well as nitrogen (N) turnover enzyme activities. We found V-shaped or inverted V-shaped relationships between the aridity index (AI) and soil microbial parameters (gene abundance, community structures, microbial diversity, and N turnover enzyme activities) with a threshold at AI = 0.27. The increasing or decreasing rates of the microbial parameters were higher in areas with AI < 0.27 (alpine steppes) than in mesic areas with 0.27 < AI < 0.89 (alpine meadow and swamp meadow). The results indicated that the projected warming and wetting have a strong impact on soil microbial communities in the alpine steppes.


Subject(s)
Climate Change , Grassland , Microbiota/genetics , Microbiota/physiology , Soil Microbiology , Soil/chemistry , Ammonia/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Biodiversity , DNA, Bacterial/genetics , Denitrification/genetics , Environmental Monitoring , Enzyme Activation , Enzyme Assays , Genes, Bacterial/genetics , Nitrification/genetics , Nitrogen/metabolism , Nitrogen Cycle , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature , Tibet
18.
Front Microbiol ; 8: 945, 2017.
Article in English | MEDLINE | ID: mdl-28611747

ABSTRACT

Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, ß-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.

19.
Oncotarget ; 8(16): 25955-25962, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28412733

ABSTRACT

Needle biopsy is an indispensable diagnostic tool in obtaining tumor tissue for diagnostic examination. Tumor cell seeding in the needle track during percutaneous needle biopsies has been reported for various types of cancers. The mechanical force of the biopsy both directly displaces the malignant cells and causes bleeding and fluid movement that can further disseminate cells. To prevent the risk of tumor cell seeding during biopsy, we developed a gelatin stick loaded with chemotherapeutics such as doxorubicin (DXR) that was inserted into the biopsy canal. The gelatin-doxorubicin sticks (GDSs) were created by passively loading precut gelatin foam strips (Gelfoam) with doxorubicin solution. The dried GDSs were inserted into the needle track through the sheath during the needle biopsy and eventually self-absorbed. We showed that this procedure prevented iatrogenic tumor seeding during needle biopsies in two subcutaneous tumor models. In an alternative application, using GDSs in intracranial brain tumor implantation avoided the outgrowth of tumor from the rodent brain, which could otherwise potentially fuse the tumor with the meninges and distort the results in therapeutic studies in rodent brain tumor models.


Subject(s)
Antineoplastic Agents/administration & dosage , Biopsy, Needle/instrumentation , Biopsy, Needle/methods , Gelatin , Neoplasm Seeding , Animals , Biopsy, Needle/adverse effects , Brain Neoplasms/diagnosis , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Disease Models, Animal , Doxorubicin/administration & dosage , Female , Gelatin/chemistry , Humans , Mice
20.
Neurotherapeutics ; 14(2): 298-306, 2017 04.
Article in English | MEDLINE | ID: mdl-28349408

ABSTRACT

The RASopathy neurofibromatosis 1 is an autosomal dominant hereditary cancer syndrome that represents a major risk for the development of malignancies, particularly malignant peripheral nerve sheath tumors (MPNSTs). MPNSTs are unique sarcomas that originate from the peripheral nerve and represent the only primary cancer of the peripheral nervous system. To date, surgery is the only treatment modality proven to have survival benefit for MPNSTs and even when maximal surgery is feasible, these tumors are rarely curable, despite the use of chemotherapy and radiation. In this review, we discuss the current state-of-the-art treatments for MPNSTs, latest therapeutic developments, and critical aspects of the underlying molecular and pathophysiology that appear promising for therapeutic developments in the future. In particular, we discuss the specific elements of cancer in the peripheral nerve and how that may impel development of unique therapies for this form of sarcoma.


Subject(s)
Neurilemmoma/genetics , Neurilemmoma/therapy , Neurofibromatosis 1/complications , Peripheral Nervous System Neoplasms/genetics , Peripheral Nervous System Neoplasms/therapy , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Combined Modality Therapy , Humans , Neurilemmoma/complications , Peripheral Nervous System Neoplasms/complications , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...