Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Waste Manag ; 159: 93-101, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36739710

ABSTRACT

Vulcanized acrylonitrile-butadiene rubber (NBR)/poly (vinyl chloride) (PVC) blends are mainly served as insulation rubber-plastic materials. However, methods to reuse the waste NBR/PVC composites lack research. Here, we found that the mechanochemically modified waste NBR/PVC composites powders (WNPP) could be an alternative to fresh NBR. According to the results, the optimal replacement amount of WNPP for NBR was 20%, and the highest feasible proportion was 40%. WNPP treated by solid-state shear milling technology (S3M) would have a high degree of desulfurization, and the cross-linked chains within WNPP would be transformed into free chains. While co-vulcanizing, the sulfur agents and heat would induce the free chains of WNPP to react with the polymer chains of the NBR substrate, thereby generating dangling chains to form a robust interfacial layer. It was beneficial for the improvement of the mechanical properties of reclaimed products. And the strain of the excellent recycled sample (20C) reached 707%. Moreover, the modified WNPP in the co-vulcanized rubber represented heterogeneity because of the internal residual crosslinked network and the not-melting PVC plastic phase. Although the heterogeneity of WNPP damaged the continuity of the NBR matrix, it also brought a better hysteresis loss capability to the composite. In conclusion, this work expanded the mechanochemical application scope in recycling NBR/PVC wastes.


Subject(s)
Acrylonitrile , Vinyl Chloride , Rubber/chemistry , Butadienes , Plastics
2.
Waste Manag ; 158: 153-163, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36709681

ABSTRACT

Cross-linked acrylonitrile-butadiene rubber (NBR)/poly(vinyl chloride) (PVC) blends are extensively served as commercial insulation foams. However, methods to reclaim the wasted NBR/PVC composites are usually inappropriate, causing severe pollution. Herein, we reported that the waste NBR/PVC composites powders (WNPP) with high thermal stability and degree of reclaiming were prepared by solid-state shear milling technology (S3M). Furthermore, the reclaimed products via thermoplastic re-processing had excellent mechanical properties, and the optimal stress and strain were increased by 208.2 % and 269.4 %, respectively, compared with the products made from virgin scraps. Through the investigation of each sample's molecular chains and thermal properties, it was found that when the cross-linked polar rubber-plastic composites are reclaimed, the molecular chains of the rubber phase would be close to each other. The interaction among polar groups would be enhanced, which is the main contributing factor limiting the movability of the polymer chains. And the interaction between the polar rubber and plastic phases would also increase, which is beneficial for the compatibility of the two phases. Moreover, there is a phase separation between the de-crosslinked continuous phase and the residual cross-linked network region for the re-processing products.


Subject(s)
Acrylonitrile , Vinyl Chloride , Rubber/chemistry , Butadienes , Plastics/chemistry
3.
ACS Omega ; 7(23): 19113-19121, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35722025

ABSTRACT

With good insulation, cross-linked polyethylene (XLPE) cables are widely used as an important basic material for power transportation. Due to being insoluble and infused, the cross-linked network structure caused a challenge in the recycling of waste XLPE, which is usually treated by incineration and landfilling. In this research, XLPE was part-de-cross-linked via solid-state shear milling (S3M) technology, but the resulting powder was difficult to process. In order to improve the re-processability of XLPE, asphalt with a similar structure was added during the thermoplastic processing. To deeply understand the influence of asphalt on the matrix, the compatibility, dispersion, and rheological properties of the composites were characterized. Due to the good compatibility between de-cross-linked XLPE and asphalt, the viscosity of the composites decreased significantly. Some sea-island structures also formed in composites, which increased the toughness of the composites, so the elongation at break reached as high as 322%. The use of asphalt to achieve the processing performance of part-de-cross-linked XLPE powder was highly effective. Furthermore, the prepared composites showed potential application in the field of waterproofing, which could recycle waste XLPE cables on a large scale.

4.
Adv Mater ; 34(46): e2108327, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35015320

ABSTRACT

Mechanochemistry with solvent-free and environmentally friendly characteristics is one of the most promising alternatives to traditional liquid-phase-based reactions, demonstrating epoch-making significance in the realization of different types of chemistry. Mechanochemistry utilizes mechanical energy to promote physical and chemical transformations to design complex molecules and nanostructured materials, encourage dispersion and recombination of multiphase components, and accelerate reaction rates and efficiencies via highly reactive surfaces. In particular, mechanochemistry deserves special attention because it is capable of endowing energy materials with unique characteristics and properties. Herein, the latest advances and progress in mechanochemistry for the preparation and modification of energy materials are reviewed. An outline of the basic knowledge, methods, and characteristics of different mechanochemical strategies is presented, distinguishing this review from most mechanochemistry reviews that only focus on ball-milling. Next, this outline is followed by a detailed and insightful discussion of mechanochemistry-involved energy conversion and storage applications. The discussion comprehensively covers aspects of energy transformations from mechanical/optical/chemical energy to electrical energy. Finally, next-generation advanced energy materials are proposed. This review is intended to bring mechanochemistry to the frontline and guide this burgeoning field of interdisciplinary research for developing advanced energy materials with greener mechanical force.

5.
ACS Omega ; 4(5): 9306-9315, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31460020

ABSTRACT

Halogen-free flame-retardant polystyrene (PS) foams prepared by supercritical carbon dioxide (SC-CO2) foaming have been achieved. The flame-retardants include expandable graphite (EG) and melamine phosphate (MP), and their influence on the foamability, decomposition behavior, fire performance, and mechanical properties of PS foams were investigated. It has been shown that flame retardants can generate inert gases and catalyze the char formation from PS, and the formed thick char layer with a notable barrier property can greatly decrease the heat release of PS foams. The addition of triphenyl phosphate (TPP) or hexaphenoxycyclotriphosphazene (HPCTP), which acts as a flame-retardant plasticizer, can obviously improve the foamability and fire performance of the foams. TPP or HPCTP can generate active phosphorous species and phenoxyl radicals to enhance the gas phase flame-retardant effect; therefore, the flame-retarded PS foams (with 25 wt % MP/EG) achieve HF1 and V-0 ratings, with limiting oxygen index (LOI) values of 30.1 or 29.6%, respectively. The numerical assessment of synergistic effects of TPP and HPCTP on further enhancing flame retardancy of PS foams has been provided by the microcalorimeter (MCC) test. Further X-ray photoelectron spectroscopy (XPS) investigation on char residues of PS foams demonstrates the formation of the P-O-C and other stable structures.

6.
R Soc Open Sci ; 6(5): 182095, 2019 May.
Article in English | MEDLINE | ID: mdl-31218035

ABSTRACT

In this study, the silicone cross-linked polyethylene (Si-XLPE) powder with better thermoplastic performance and abundant cross-linked network points was attained by using solid-state shear mechanochemical (S3M) technology and it was added into high-density polyethylene (HDPE) matrix to prepare Si-XLPE/HDPE tubes by a rotation extrusion rheometer. SEM and 2D-SAXS experiments showed that the presence of Si-XLPE and rotation extrusion facilitated the formation of stable shish-kebabs which deviated from the axial direction in polyethylene (PE) tubes. This result was interpreted that introduction of Si-XLPE in PE tubes provided abundant molecular cross-linked network structures, which suppressed the thermal movement and relaxation of oriented molecular chains owing to intermolecular interaction. Moreover, the axial and hoop flow field further promoted orientation of the permanent cross-linked network entanglement points and formation of more stable cluster-like shish structures in the off-axial direction during the rotation extrusion process. Besides, our experimental results had also ascertained that molecular orientation and shish-kebabs in off-axial direction should be the primary responsibility for the remarkable enhancement of hoop torsional strength in PE tubes. Hoop torsional strength of PE tubes adding Si-XLPE reached 19.58 MPa when the mandrel rotation rate was 30 r.p.m., while that of conventional extruded PE tubes was only 9.83 MPa. As a consequence, PE tubes with excellent performance were prepared under the combined effect of Si-XLPE and rotation extrusion.

7.
ACS Appl Mater Interfaces ; 11(3): 3388-3399, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30444597

ABSTRACT

Polymer composites with high thermal conductivity are highly desirable for modern electronic and electrical industry because of their wide range of applications. However, conventional polymer composites with high thermal conductivity usually suffer from the deterioration of electrical insulation and high dielectric loss, whereas polymer composite materials with excellent electrical insulation and dielectric properties usually possess low thermal conductivity. In this study, combining surface-oxidized aluminum (Al) nanoflake and multilayer plastic package waste (MPW) by powder mixing technique, we report a novel strategy for polymer composites with high thermal conduction, high electrical insulation, and low dielectric loss. The resultant MPW/Al, MPW/Al400, and MPW/Al500 composites exhibited the maximum thermal conductivity of 4.8, 3.5, and 1.4 W/mK, respectively, which exceeds those of most of the corresponding composites reported previously. In addition, all the composites still have high insulation (<10-13 S/cm) and maintain dielectric loss at a relatively low level (<0.025). Such a result is ascribed to the formation of an insulating Al2O3 shell and the continuous three-dimensional filler network, which is revealed by Agari model fitting coefficient. The model of effective medium theory qualitatively demonstrates that the lower interfacial thermal resistances of the MPW/Al composite can also benefit the high thermal conduction. This interfacial engineering strategy provides an effectively method for the fabrication of polymer materials with high-performance thermal management.

8.
RSC Adv ; 8(6): 2880-2886, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-35541205

ABSTRACT

Polysulfone (PSU) is considered as an important candidate for the fabrication of high-performance microcellular polymers, but the preparation of PSU foam with a high expansion ratio still remains a big challenge worldwide. In this study, high expansion ratio PSU foam was successfully prepared by a supercritical carbon dioxide (CO2) assisted molding foaming method. The foaming behavior of PSU under supercritical CO2 was systematically studied in various process conditions and different microcellular structures were created in PSU foams. The results showed that foaming temperature and CO2 concentration were the key factors to obtain microcellular foams with tailored microstructures. The cellular structure and expansion ratio of PSU foam obviously changed with different foaming temperatures. The expansion ratio and average cell size firstly increased and then decreased as foaming temperature increased. However, the cell density decreased and then remained stable as foaming temperature increased. The maximum expansion ratio of 11.0 was reached at the optimum foaming temperature of 200 °C. Cellular structure and morphologies of the foam changed obviously at CO2 concentrations below 5% and remained stable at CO2 concentrations above 5%. Finally, the prepared PSU foams exhibit excellent mechanical strength, good thermal conductivity, and superb heat retardancy, thus may have great potential application as a kind of substitute material in the electrical wire and cable industry, railway and steamer transportation, oil and gas platforms, military use and in other fields.

9.
RSC Adv ; 8(5): 2804-2810, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-35541492

ABSTRACT

The thermal processing of poly(vinyl alcohol) (PVA) is a big challenge worldwide. In this article, silver nitrate (AgNO3), which can combine with the hydroxyl groups of PVA and water, was introduced to further improve the thermal processability of the poly(vinyl alcohol)/water system. The water states, thermal performance, and rheological properties of PVA modified by AgNO3 were investigated. The results showed that with the increasing of AgNO3 content, the content of bound water in system increased ascribing to the interaction among PVA, water and AgNO3, indicating that the bondage of PVA matrix on water enhanced, thus retarding the tempestuous evaporation of water in system during melt process and making more water remain in system to play the role of plasticizer. Meanwhile, that AgNO3 combined with the hydroxyl groups of PVA further weakened the self-hydrogen bonding of PVA, guaranteeing a lower melting point and higher decomposition temperature, and broadening the thermal processing window. The rheological properties of the modified PVA system showed that the torque and die pressure of the modified PVA system turned to stabilization during melt processing, testifying that the thermal processability of the PVA/water system was largely improved.

10.
Waste Manag ; 57: 168-175, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26553315

ABSTRACT

In this study nonmetals recycled from waste printed circuit boards (NPCB) is used as reinforce fillers in high-density polyethylene (HDPE) composites. The morphology, mechanical and thermal oxidative aging properties of NPCB reinforced HDPE composites are assessed and it compared with two other commercial functional filler for the first time. Mechanical test results showed that NPCB could be used as reinforcing fillers in the HDPE composites and mechanical properties especially for stiffness is better than other two commercial fillers. The improved mechanical property was confirmed by the higher aspect ratio and strong interfacial adhesion in scanning electron microscopy (SEM) studies. The heat deflection temperature (HDT) test showed the presence of fiberglass in NPCB can improve the heat resistance of composite for their potential applications. Meanwhile, the oxidation induction time (OIT) and the Fourier transform infrared (FTIR) spectroscopy results showed that NPCB has a near resistance to oxidation as two other commercial fillers used in this paper. The above results show the reuse of NPCB in the HDPE composites represents a promising way for resolving both the environmental pollution and the high-value reuse of resources.


Subject(s)
Electronic Waste , Recycling/methods , Waste Products , Construction Materials , Hot Temperature , Metals , Microscopy, Electron, Scanning , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...