Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(41): 15341-15351, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37787767

ABSTRACT

Proanthocyanidins (PAs) are predominantly regulated at the transcriptional level by sophisticated regulatory networks. In cotton, the role of miRNAs as key regulatory factors at the post-transcriptional level is still unclear. Here, we demonstrated that GhmiR858 negatively regulates PA accumulation in cotton leaves and calli by targeting GhTT2L. Excessive expression of GhmiR858 restrained the expression of GhTT2L, resulting in a significant decrease in PA abundance. Conversely, a reduction in GhmiR858 activity upregulated GhTT2L, which increased PA accumulation. Additionally, GhTT2L was found to positively regulate PA accumulation in both cotton and Arabidopsis. Further analyses showed that GhTT2L interacted with transcription factor GhTTG1, which directly binds to the GhANR promoter, to facilitate its transcription. This study provides new information to guide future studies of the PA regulatory mechanisms affected by miRNAs as well as the breeding of novel varieties of colored cotton with rich PAs.


Subject(s)
Arabidopsis , MicroRNAs , Proanthocyanidins , Gossypium/genetics , Gossypium/metabolism , Proanthocyanidins/metabolism , Cotton Fiber , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Arabidopsis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Plant
2.
Plants (Basel) ; 11(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36235527

ABSTRACT

The NAC transcription factors (NACs) are among the largest plant-specific gene regulators and play essential roles in the transcriptional regulation of both biotic and abiotic stress responses. Verticillium wilt of cotton caused by Verticillium dahliae (V. dahliae) is a destructive soil-borne disease that severely decreases cotton yield and quality. Although NACs constitute a large family in upland cotton (G. hirsutum L.), there is little systematic investigation of the NACs' responsive to V. dahliae that has been reported. To further explore the key NACs in response to V. dahliae resistance and obtain a better comprehension of the molecular basis of the V. dahliae stress response in cotton, a genome-wide survey was performed in this study. To investigate the roles of GhNACs under V. dahliae induction in upland cotton, mRNA libraries were constructed from mocked and infected roots of upland cotton cultivars with the V. dahliae-sensitive cultivar "Jimian 11" (J11) and V. dahliae-tolerant cultivar "Zhongzhimian 2" (Z2). A total of 271 GhNACs were identified. Genome analysis showed GhNACs phylogenetically classified into 12 subfamilies and distributed across 26 chromosomes and 20 scaffolds. A comparative transcriptome analysis revealed 54 GhNACs were differentially expressed under V. dahliae stress, suggesting a potential role of these GhNACs in disease response. Additionally, one NAC090 homolog, GhNAC204, could be a positive regulator of cotton resistance to V. dahliae infection. These results give insight into the GhNAC gene family, identify GhNACs' responsiveness to V. dahliae infection, and provide potential molecular targets for future studies for improving V. dahliae resistance in cotton.

SELECTION OF CITATIONS
SEARCH DETAIL
...