Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 132(1): 236-246, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34882027

ABSTRACT

High-intensity interval exercise (HIIT) is performed widely. However, there is a gap in knowledge regarding the acute cerebrovascular response to low-volume HIIT. Our objective was to characterize the middle cerebral artery blood velocity (MCAv) response during an acute bout of low-volume HIIT in young healthy adults. We hypothesized that MCAv would decrease below the baseline (BL), 1) during HIIT, 2) immediately following HIIT, and 3) 30 min after HIIT. As a secondary objective, we investigated sex differences in the MCAv response during HIIT. Twenty-four young healthy adults completed HIIT [12 males, age = 25 (SD = 2)]. HIIT included 10 min of 1-min high intensity (∼70% estimated maximal Watts) and active recovery (10% estimated maximal Watts) intervals on a recumbent stepper. MCAv, mean arterial pressure (MAP), heart rate (HR), and end-tidal carbon dioxide ([Formula: see text]) were recorded at BL, during HIIT, immediately following HIIT, and 30 min after HIIT. Contrary to our hypothesis, MCAv remained above BL during HIIT. MCAv peaked at minute 3 then decreased concomitantly with [Formula: see text]. MCAv was lower than BL immediately following HIIT (P < 0.001). Thirty minutes after HIIT, MCAv returned to BL (P = 0.47). Compared with men, women had a higher MCAv at BL (P = 0.001), during HIIT (P = 0.009), immediately following HIIT (P = 0.004), and 30 min after HIIT (P = 0.001). MCAv did not decrease below BL during low-volume HIIT. However, MCAv decreased below BL immediately following HIIT and returned to resting values 30 min after HIIT. MCAv also differed between sexes.NEW & NOTEWORTHY We are the first, to our knowledge, to characterize the cerebrovascular and hemodynamic response to low-volume high-intensity interval exercise (HIIT, 1-min intervals) in young healthy adults. Middle cerebral artery blood velocity (MCAv) decreased during the HIIT bout and rebounded during active recovery. Women demonstrated a significantly higher resting MCAv than men and the difference remained during HIIT. Here, we report a novel protocol and characterized the MCAv response during an acute bout of low-volume HIIT.


Subject(s)
Cerebrovascular Circulation , Exercise , Adult , Blood Pressure , Female , Heart Rate , Humans , Male , Middle Cerebral Artery
2.
J Am Heart Assoc ; 10(3): e017821, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33496192

ABSTRACT

Background The primary aim of this study was to characterize the middle cerebral artery blood velocity (MCAv) dynamic response to an acute bout of exercise in humans at 3- and 6-months poststroke. As a secondary objective, we grouped individuals according to the MCAv dynamic response to the exercise bout as responder or nonresponder. We tested whether physical activity, aerobic fitness, and exercise mean arterial blood pressure differed between groups. Methods and Results Transcranial Doppler ultrasound measured MCAv during a 90-second baseline followed by a 6-minute moderate intensity exercise bout. Heart rate, mean arterial blood pressure, and end-tidal CO2 were additional variables of interest. The MCAv dynamic response variables included the following: baseline, time delay, amplitude, and time constant. Linear mixed model revealed no significant differences in our selected outcomes between 3- and 6-months poststroke. Individuals characterized as responders demonstrated a faster time delay, higher amplitude, and reported higher levels of physical activity and aerobic fitness when compared with the nonresponders. No between-group differences were identified for baseline, time constant, or exercise mean arterial blood pressure. In the nonresponders, we observed an immediate rise in MCAv following exercise onset followed by an immediate decline to near baseline values, while the responders showed an exponential rise until steady state was reached. Conclusions The MCAv dynamic response profile has the potential to provide valuable information during an acute exercise bout following stroke. Individuals with a greater MCAv response to the exercise stimulus reported statin use and regular participation in exercise.


Subject(s)
Blood Flow Velocity/physiology , Cerebrovascular Circulation/physiology , Exercise Therapy/methods , Exercise/physiology , Middle Cerebral Artery/physiopathology , Stroke Rehabilitation/methods , Stroke/physiopathology , Adult , Aged , Aged, 80 and over , Blood Pressure/physiology , Female , Follow-Up Studies , Heart Rate/physiology , Humans , Male , Middle Aged , Middle Cerebral Artery/diagnostic imaging , Pilot Projects , Prognosis , Stroke/diagnosis , Time Factors , Ultrasonography, Doppler, Transcranial/methods
3.
Brain Behav ; 11(2): e01990, 2021 02.
Article in English | MEDLINE | ID: mdl-33295148

ABSTRACT

BACKGROUND AND PURPOSE: Chronic hyperglycemia contributes to cerebrovascular dysfunction by damaging blood vessels. Poor glucose control has been tied to impairments in cerebral blood flow, which may be particularly detrimental for people recovering from major cerebrovascular events such as acute ischemic stroke. In this secondary analysis, we explore for the first time the connection between chronic hyperglycemia before acute stroke and the cerebrovascular response (CVR) to exercise 3 and 6 month into the subacute recovery period. METHODS: We recorded middle cerebral artery velocity (MCAv) using transcranial Doppler ultrasound bilaterally at rest and during moderate-intensity exercise in stroke patients at 3 (n = 19) and 6 (n = 12) months post-stroke. We calculated CVR as the difference between MCAv during steady-state exercise and resting MCAv. We obtained hemoglobin A1c levels (HbA1c; a measure of blood glucose over the prior 3 months) from the electronic medical record (EMR) and divided participants by HbA1c greater or less than 7%. RESULTS: Participants with high HbA1c (>7%) at the time of acute stroke had significantly lower CVR to exercise for both the stroke-affected (p = .009) and non-affected (p = .007) hemispheres at 3 months post-stroke. These differences remained significant at 6 months post-stroke (stroke-affected, p = .008; non-affected, p = .016). CONCLUSIONS: Patients with chronic hyperglycemia before acute ischemic stroke demonstrated impaired cerebrovascular function during exercise months into the subacute recovery period. These findings highlight the importance of maintaining tight glucose control to reduce morbidity and improve recovery post-stroke and could have implications for understanding cerebrovascular pathophysiology.


Subject(s)
Brain Ischemia , Hyperglycemia , Ischemic Stroke , Stroke , Blood Flow Velocity , Brain Ischemia/complications , Brain Ischemia/diagnostic imaging , Cerebrovascular Circulation , Exercise , Humans , Middle Cerebral Artery , Stroke/complications , Stroke/diagnostic imaging
4.
Physiol Rep ; 7(21): e14268, 2019 11.
Article in English | MEDLINE | ID: mdl-31691542

ABSTRACT

Blood flow regulation is impaired in people with stroke. However, the time course of change in middle cerebral artery velocity (MCAv) following repeated stroke at rest and during exercise remains unknown. In this case study, we provide novel characterization of the dynamic kinetic MCAv response profile to moderate-intensity exercise before and after repeated ischemic MCA stroke. The initial stroke occurred in the left MCA. At 3 months poststroke, left MCAv amplitude (Amp) was ~50% lower than the right. At the 6-month follow-up visit, MCAv Amp declined in both MCA with the left MCAv Amp ~50% lower than the right MCAv Amp. Following a second right MCA stroke, we report further decline in Amp for the left MCA. At the 3- and 6-month visit following the second stroke, the left MCAv Amp declined further (~10%). The right MCAv Amp dramatically decreased by 81.3% when compared to the initial study visit. The MCAv kinetic analysis revealed a marked impairment in the cerebrovascular response to exercise following stroke. We discuss potential pathophysiological mechanisms contributing to poststroke cerebrovascular dysfunction and the need to test therapeutic interventions (such as exercise) that might attenuate cerebrovascular decline in people following stroke.


Subject(s)
Brain Ischemia/physiopathology , Exercise/physiology , Middle Cerebral Artery/physiopathology , Stroke/physiopathology , Aged , Blood Flow Velocity , Brain Ischemia/complications , Hemodynamics , Humans , Male , Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...