Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 75(3): 819-836, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37936320

ABSTRACT

Fruit ripening and the associated softening are major determinants of fruit quality and post-harvest shelf life. Although the mechanisms underlying fruit softening have been intensively studied, there are limited reports on the regulation of fruit softening in apples (Malus domestica). Here, we identified a zinc finger homeodomain transcription factor MdZF-HD11that trans-activates the promoter of Mdß-GAL18, which encodes a pectin-degradation enzyme associated with cell wall metabolism. Both MdZF-HD11 and Mdß-GAL18 genes were up-regulated by exogenous ethylene treatment and repressed by 1-methylcyclopropene treatment. Further experiments revealed that MdZF-HD11 binds directly to the Mdß-GAL18 promoter and up-regulates its transcription. Moreover, using transgenic apple fruit calli, we found that overexpression of Mdß-GAL18 or MdZF-HD11 significantly enhanced ß-galactosidase activity, and overexpression of MdZF-HD11 induced the expression of Mdß-GAL18. We also discovered that transient overexpression of Mdß-GAL18 or MdZF-HD11 in 'Golden Delicious' apple significantly increased the release of ethylene, reduced fruit firmness, promoted the transformation of skin color from green to yellow, and accelerated ripening and softening of the fruit. Finally, the overexpression of MdZF-HD11 in tomato also promoted fruit softening. Collectively, these results indicate that ethylene-induced MdZF-HD11 interacts with Mdß-GAL18 to promote the post-harvest softening of apple.


Subject(s)
Malus , Malus/metabolism , Fruit/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298249

ABSTRACT

Apple (Malus × domestica Borkh.) is one of the most cultivated fruit crops in China. Apple trees frequently encounter waterlogging stress, mainly due to excess rainfall, soil compaction, or poor soil drainage, results in yellowing leaves and declined fruit quality and yield in some regions. However, the mechanism underlying the response to waterlogging has not been well elucidated. Therefore, we performed a physiological and transcriptomic analysis to examine the differential responses of two apple rootstocks (waterlogging-tolerant M. hupehensis and waterlogging-sensitive M. toringoides) to waterlogging stress. The results showed that M. toringoides displayed more severe leaf chlorosis during the waterlogging treatment than M. hupehensis. Compared with M. hupehensis, the more severe leaf chlorosis induced by waterlogging stress in M. toringoides was highly correlated with increased electrolyte leakage and superoxide radicals, hydrogen peroxide accumulation, and increased stomata closure. Interestingly, M. toringoides also conveyed a higher ethylene production under waterlogging stress. Furthermore, RNA-seq revealed that a total of 13,913 common differentially expressed genes (DEGs) were differentially regulated between M. hupehensis and M. toringoides under waterlogging stress, especially those DEGs involved in the biosynthesis of flavonoids and hormone signaling. This suggests a possible link of flavonoids and hormone signaling to waterlogging tolerance. Taken together, our data provide the targeted genes for further investigation of the functions, as well as for future molecular breeding of waterlogging-tolerant apple rootstocks.


Subject(s)
Malus , Malus/metabolism , Gene Expression Profiling , Fruit , Plant Leaves/metabolism , Hormones/metabolism , Transcriptome , Gene Expression Regulation, Plant , Stress, Physiological/genetics
4.
Plant Biotechnol J ; 21(7): 1465-1478, 2023 07.
Article in English | MEDLINE | ID: mdl-37069831

ABSTRACT

Existing CRISPR/Cas12a-based diagnostic platforms offer accurate and vigorous monitoring of nucleic acid targets, but have the potential to be further optimized for more efficient detection. Here, we profiled 16 Cas12a orthologs, focusing on their trans-cleavage activity and their potential as diagnostic enzymes. We observed the Mb2Cas12a has more robust trans-cleavage activity than other orthologs, especially at lower temperatures. An engineered Mb2Cas12a-RRVRR variant presented robust trans-cleavage activity and looser PAM constraints. Moreover, we found the existing one-pot assay, which simultaneously performed Recombinase Polymerase Amplification (RPA) and Cas12a reaction in one system, resulted in the loss of single-base discrimination during diagnosis. Therefore, we designed a reaction vessel that physically separated the RPA and Cas12a steps while maintaining a closed system. This isolated but closed system made diagnostics more sensitive and specific and effectively prevented contamination. This shelved Mb2Cas12a-RRVRR variant-mediated assay detected various targets in less than 15 min and exhibited equal or greater sensitivity than qPCR when detecting bacterial pathogens, plant RNA viruses and genetically modified crops. Overall, our findings further improved the efficiency of the current CRISPR-based diagnostic system and undoubtedly have great potential for highly sensitive and specific detection of multiple sample types.


Subject(s)
Nucleic Acids , Crops, Agricultural , Plants, Genetically Modified , RNA, Plant , Recombinases/genetics , CRISPR-Cas Systems/genetics
5.
J Hazard Mater ; 426: 128038, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34953258

ABSTRACT

Pre-planting testing of seeds and plantlets for the existence of quarantine pathogens is an important phytosanitary measure. The CRISPR-mediated molecular diagnostic methodologies are being developed for pathogens detection, but many challenges remain. Here, we profiled an engineered Crispr/LbCas12a variant (LbCas12a-5M) that has more robust trans-cleavage activity and a wider PAM sequences (TNTN) preference than wild type. We developed a procedure for screening specific sequences of bacterial plant pathogens, and the designed species-specific crRNA displayed no cross-reactions with other bacterial species. Combined with a simple extraction of bacterial DNA, an LbCas12a-5M-based visual detection technique was established and optimized for detecting quarantine pathogens Erwinia amylovora and Acidovorax citrulli with detection limits up to 40 CFU/reaction and a sensitivity consistent with qPCR assay. This protocol was faster and simpler than qPCR, requiring 40 min or less from sample preparation. We further validated the potential application of the method by showing that it can be used for rapid and accurate diagnosis of A. citrulli on seeds of watermelon, with 100% agreement with the results of qPCR assay. The developed method simplifies the detection of pathogens and provides cost-effective countermeasures to quarantine interventions.


Subject(s)
Citrullus , Quarantine , Crops, Agricultural , DNA, Bacterial/genetics , Real-Time Polymerase Chain Reaction
6.
Front Genet ; 12: 746392, 2021.
Article in English | MEDLINE | ID: mdl-34868217

ABSTRACT

Melatonin acts both as an antioxidant and as a growth regulatory substance in plants. Pseudomonas fluorescens endophytic bacterium has been shown to produce melatonin and increase plant resistance to abiotic stressors through increasing endogenous melatonin. However, in bacteria, genes are still not known to be melatonin-related. Here, we reported that the bacterial phenylalanine 4-hydroxylase (PAH) may be involved in the 5-hydroxytryptophan (5-HTP) biosynthesis and further influenced the subsequent production of melatonin in P. fluorescens. The purified PAH protein of P. fluorescens not only hydroxylated phenylalanine but also exhibited l-tryptophan (l-Trp) hydroxylase activity by converting l-Trp to 5-HTP in vitro. However, bacterial PAH displayed lower activity and affinity for l-Trp than l-phenylalanine. Notably, the PAH deletion of P. fluorescens blocked melatonin production by causing a significant decline in 5-HTP levels and thus decreased the resistance to abiotic stress. Overall, this study revealed a possible role for bacterial PAH in controlling 5-HTP and melatonin biosynthesis in bacteria, and expanded the current knowledge of melatonin production in microorganisms.

7.
Front Plant Sci ; 12: 749108, 2021.
Article in English | MEDLINE | ID: mdl-34712262

ABSTRACT

Mango (2n = 2x = 40) is an important tropical/subtropical evergreen fruit tree grown worldwide and yields nutritionally rich and high-value fruits. Here, a high-quality mango genome (396 Mb, contig N50 = 1.03 Mb) was assembled using the cultivar "Irwin" from Florida, USA. A total of 97.19% of the sequences were anchored to 20 chromosomes, including 36,756 protein-coding genes. We compared the ß-carotene content, in two different cultivars ("Irwin" and "Baixiangya") and growth periods. The variation in ß-carotene content mainly affected fruit flesh color. Additionally, transcriptome analysis identified genes related to ß-carotene biosynthesis. MiPSY1 was proved to be a key gene regulating ß-carotene biosynthesis. Weighted gene co-expression network analysis, dual luciferase, and yeast one-hybrid assays confirmed that transcription factors (TFs) MibZIP66 and MibHLH45 activate MiPSY1 transcription by directly binding to the CACGTG motif of the MiPSY1 promoter. However, the two TFs showed no significant synergistic effect on promoter activity. The results of the current study provide a genomic platform for studying the molecular basis of the flesh color of mango fruit.

8.
Front Genet ; 12: 783482, 2021.
Article in English | MEDLINE | ID: mdl-35111199

ABSTRACT

Zinc finger-homeodomain (ZF-HD) transcription factors play an important role in the regulation of plant growth and development, as well as the regulation of stress responses. Studies on the ZF-HD family genes have been conducted in many plants, however, the characteristics of this family in apple (Malus domestica) fruit remains to be poorly understood. In this study, we identified nineteen ZF-HD family genes in apple at the whole-genome scale, which were unevenly located on ten chromosomes. These MdZF-HD genes were phylogenetically divided into two subfamilies: zinc finger-homeodomain (ZHD) and MINI ZINC FINGER (MIF), and the ZHD subfamily was further classified into five groups (ZHDI-ZHDV). Analysis of the gene structures showed that most MdZF-HD genes lack introns. Gene expression analysis indicated that nine selected MdZF-HD genes were differentially responsive to 1-MCP (1-methylcyclopropene) treatment during the postharvest storage of "Qinguan" apple fruit. Moreover, the transcripts of six genes were further validated in "Golden Delicious" apple fruit, and five genes (MdZHD1/2/6/10/11) were significantly repressed and one gene (MdZHD7) was slightly induced by ethylene treatment. These results indicated that these six MdZF-HD genes may involve in the regulation of ethylene induced ripening process of postharvest apple fruit. These findings provide new clues for further functional investigation of ZF-HD genes, such as their roles in the regulation of fruit ripening.

9.
Plant Biotechnol J ; 19(2): 394-405, 2021 02.
Article in English | MEDLINE | ID: mdl-32886837

ABSTRACT

Co-infection of apple trees with several viruses/viroids is common and decreases fruit yield and quality. Accurate and rapid detection of these viral pathogens helps to reduce losses and prevent virus spread. Current molecular detection assays used for apple viruses require specialized and expensive equipment. Here, we optimized a CRISPR/Cas12a-based nucleic acid detection platform for the diagnosis of the most prevalent RNA viruses/viroid in apple, namely Apple necrotic mosaic virus (ApNMV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), Apple chlorotic leaf spot virus (ACLSV) and Apple scar skin viroid (ASSVd). We detected each RNA virus/viroid directly from crude leaf extracts after simultaneous multiplex reverse transcription-recombinase polymerase amplification (RT-RPA) with high specificity. Positive results can be distinguished by the naked eye via oligonucleotide-conjugated gold nanoparticles. The CRISPR/Cas12a-RT-RPA platform exhibited comparable sensitivity to RT-qPCR, with limits of detection reaching 250 viral copies per reaction for ASPV and ASGV and 2500 copies for the others. However, this protocol was faster and simpler, requiring an hour or less from leaf harvest. Field tests showed 100% agreement with RT-PCR detection for 52 samples. This novel Cas12a-based method is ideal for rapid and reliable detection of apple viruses in the orchard without the need to send samples to a specialized laboratory.


Subject(s)
Metal Nanoparticles , RNA Viruses , Viroids , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gold , Plant Diseases , RNA Viruses/genetics , RNA, Viral/genetics , Sensitivity and Specificity , Viroids/genetics
10.
Front Genet ; 11: 609184, 2020.
Article in English | MEDLINE | ID: mdl-33240335

ABSTRACT

Apple (Malus domestica Borkh.), an economically important tree fruit worldwide, frequently suffers from temperature stress during growth and development, which strongly affects the yield and quality. Heat shock protein 20 (HSP20) genes play crucial roles in protecting plants against abiotic stresses. However, they have not been systematically investigated in apple. In this study, we identified 41 HSP20 genes in the apple 'Golden Delicious' genome. These genes were unequally distributed on 15 different chromosomes and were classified into 10 subfamilies based on phylogenetic analysis and predicted subcellular localization. Chromosome mapping and synteny analysis indicated that three pairs of apple HSP20 genes were tandemly duplicated. Sequence analysis revealed that all apple HSP20 proteins reflected high structure conservation and most apple HSP20 genes (92.6%) possessed no introns, or only one intron. Numerous apple HSP20 gene promoter sequences contained stress and hormone response cis-elements. Transcriptome analysis revealed that 35 of 41 apple HSP20 genes were nearly unchanged or downregulated under normal temperature and cold stress, whereas these genes exhibited high-expression levels under heat stress. Subsequent qRT-PCR results showed that 12 of 29 selected apple HSP20 genes were extremely up-regulated (more than 1,000-fold) after 4 h of heat stress. However, the heat-upregulated genes were barely expressed or downregulated in response to cold stress, which indicated their potential function in mediating the response of apple to heat stress. Taken together, these findings lay the foundation to functionally characterize HSP20 genes to unravel their exact role in heat defense response in apple.

11.
Front Plant Sci ; 11: 574881, 2020.
Article in English | MEDLINE | ID: mdl-33178245

ABSTRACT

Adventitious root (AR) formation is indispensable for vegetative asexual propagation. Indole-3-butyric acid (IBA) functioned indirectly as precursor of IAA in regulating AR formation. Ethylene affects auxin synthesis, transport, and/or signaling processes. However, the interactions between auxin and ethylene that control AR formation in apple have not been elucidated. In this study, we investigated the effects of IBA and its interaction with ethylene on AR development in apple. The results revealed that IBA stimulated the formation of root primordia, increased the number of ARs, and upregulated expression of genes (MdWOX11, MdLBD16, and MdLBD29) involved in AR formation. Comparison of different periods of IBA application indicated that IBA was necessary for root primordium formation, while long time IBA treatment obviously inhibited root elongation. RNA-seq analysis revealed that many plant hormone metabolism and signal transduction related genes were differentially expressed. IBA stimulated the production of ethylene during AR formation. Auxin inhibiting ARs elongation depended on ethylene. Together, our results suggest that the inhibitory role of auxin on AR elongation in apples is partially mediated by stimulated ethylene production.

12.
Front Plant Sci ; 11: 692, 2020.
Article in English | MEDLINE | ID: mdl-32582242

ABSTRACT

Columnar apples trees, originated from a bud mutation 'Wijcik McIntosh,' develop a simple canopy and set fruit on spurs. These characteristics make them an important genetic resource for improvement of tree architecture. Genetic studies have uncovered that columnar growth habit is a dominant trait and is caused by a retroposon insertion that induces the expression of the neighboring gene Co encoding a 2OG-Fe(II) oxygenase. Here we report the genetic mapping of two loci of recessive suppressors (genes) c2 (on Chr10) and c3 (on Chr9) that are linked to repression of the retroposon-induced Co gene expression and associated columnar phenotype in 275 F1 seedlings, which were developed from a reciprocal cross between two columnar selections heterozygous at the Co locus. The mapping was accomplished by sequencing a genomic pool comprising 18 columnar seedlings and another pool of 16 standard seedlings that also carry the retroposon insertion, and by exploring DNA variants of segregation types that are informative for mapping recessive traits in apple. The informative segregation types include , , , , and , where each letter denotes one of the four DNA bases and the letters in bold represent variants in relation to the reference genome. The alleles in each first and third positions are assumed in linkage with the recessive suppressors' allele in the two parents, respectively. Using RNA-seq analysis, we further revealed that the Co gene together with the differentially expressed genes under loci c2 and c3 formed a co-expression gene-network module associated with growth habit, in which 12 MapMan Bins were enriched.

13.
DNA Res ; 27(1)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32271875

ABSTRACT

Short interspersed nuclear elements (SINEs) are non-autonomous retrotransposons that are highly abundant, but not well annotated, in plant genomes. In this study, we identified 41,573 copies of SINEs in seven citrus genomes, including 11,275 full-length copies. The citrus SINEs were distributed among 12 families, with an average full-length rate of 0.27, and were dispersed throughout the chromosomes, preferentially in AT-rich areas. Approximately 18.4% of citrus SINEs were found in close proximity (≤1 kb upstream) to genes, indicating a significant enrichment of SINEs in promoter regions. Citrus SINEs promote gene and genome evolution by offering exons as well as splice sites and start and stop codons, creating novel genes and forming tandem and dispersed repeat structures. Comparative analysis of unique homologous SINE-containing loci (HSCLs) revealed chromosome rearrangements in sweet orange, pummelo, and mandarin, suggesting that unique HSCLs might be valuable for understanding chromosomal abnormalities. This study of SINEs provides us with new perspectives and new avenues by which to understand the evolution of citrus genes and genomes.


Subject(s)
Citrus/genetics , Evolution, Molecular , Genome, Plant , Short Interspersed Nucleotide Elements/genetics , Citrus/classification , Phylogeny
14.
Physiol Plant ; 147(4): 514-23, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22924708

ABSTRACT

We examined the potential differences in tolerance to hypoxia by two species of apple rootstocks. Stomatal behavior and photosynthesis were compared between Malus sieversii and Malus hupehensis. Plants were hydroponically grown for 15 days in normoxic or hypoxic nutrient solutions. Those of M. sieversii showed much greater sensitivity, with exposure to hypoxia resulting in higher leaf concentrations of abscisic acid (ABA) that prompted stomatal closure. Compared with the control plants of that species, stomatal density was greater in both new and mature leaves under stress conditions. In contrast, stomatal density was significantly decreased in leaves from M. hupehensis, while stomatal length was unaffected. Under stress, the net photosynthetic rate, stomatal conductance and chlorophyll contents were markedly reduced in M. sieversii. The relatively hypoxia-tolerant genotype M. hupehensis, however, showed only minor changes in net photosynthesis or chlorophyll content, and only a slight decrease in stomatal conductance due to such treatment. Therefore, we conclude that the more tolerant M. hupehensis utilizes a better protective mechanism for retaining higher photosynthetic capacity than does the hypoxia-sensitive M. sieversii. Moreover, this contrast in tolerance and adaptation to stress is linked to differences in their stomatal behavior, photosynthetic capacity and possibly their patterns of native distribution.


Subject(s)
Adaptation, Physiological , Hypoxia , Malus/physiology , Photosynthesis , Plant Stomata/physiology , Abscisic Acid/metabolism , Chlorophyll/metabolism , Species Specificity
15.
Mol Genet Genomics ; 287(5): 437-50, 2012 May.
Article in English | MEDLINE | ID: mdl-22526430

ABSTRACT

Tree architecture is an important, complex and dynamic trait affected by diverse genetic, ontogenetic and environmental factors. 'Wijcik McIntosh', a columnar (reduced branching) sport of 'McIntosh' and a valuable genetic resource, has been used intensively in apple-breeding programs for genetic improvement of tree architecture. The columnar growth habit is primarily controlled by the dominant allele of gene Co (columnar) on linkage group-10. But the Co locus is not well mapped and the Co gene remains unknown. To precisely map the Co locus and to identify candidate genes of Co, a sequence-based approach using both peach and apple genomes was used to develop new markers linked more tightly to Co. Five new simple sequence repeats markers were developed (C1753-3520, C18470-25831, C6536-31519, C7223-38004 and C7629-22009). The first four markers were obtained from apple genomic sequences on chromosome-10, whereas the last (C7629-22009) was from an unanchored apple contig that contains an apple expressed sequence tag CV082943, which was identified through synteny analysis between the peach and apple genomes. Genetic mapping of these five markers in four F(1) populations of 528 genotypes and 290 diverse columnar selections/cultivars (818 genotypes in total) delimited the Co locus in a genetic interval with 0.37 % recombination between markers C1753-3520 and C7629-22009. Marker C18470-25831 co-segregates with Co in the 818 genotypes studied. The Co region is estimated to be 193 kb and contains 26 predicted gene in the 'Golden Delicious' genome. Among the 26 genes, three are putative LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) containing transcription factor genes known of essential roles in plant lateral organ development, and are therefore considered as strong candidates of Co, designated MdLBD1, MdLBD2, and MdLBD3. Although more comprehensive studies are required to confirm the function of MdLBD1-3, the present work represents an important step forward to better understand the genetic and molecular control of tree architecture in apple.


Subject(s)
Malus/genetics , Amino Acid Sequence , Base Sequence , Breeding , Chromosome Mapping , DNA Primers/genetics , DNA, Plant/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genetic Markers , Malus/growth & development , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...