Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 594: 110037, 2024 06.
Article in English | MEDLINE | ID: mdl-38498965

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo. Our findings demonstrated that nHYP with a purity >98% was successfully isolated from hawthorn with an extraction rate of 0.42 mg/g. Furthermore, nHYP exhibited strong inhibitory effects on PEDV replication in cells, with a selection index of 9.72. nHYP significantly reduced the viral load in the intestines of piglets and protected three of four piglets from death caused by PEDV infection. Mechanistically, nHYP could intervene in the interaction of PEDV N protein and p53. The findings implicate nHYP as having promising therapeutic potential for combating PEDV infections.


Subject(s)
Coronavirus Infections , Crataegus , Porcine epidemic diarrhea virus , Quercetin/analogs & derivatives , Swine Diseases , Animals , Swine , Diarrhea , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Swine Diseases/drug therapy
2.
J Gen Virol ; 105(3)2024 03.
Article in English | MEDLINE | ID: mdl-38471043

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and even death in piglets, resulting in significant economic losses to the pig industry. Because of the ongoing mutation of PEDV, there might be variations between the vaccine strain and the prevailing strain, causing the vaccine to not offer full protection against different PEDV variant strains. Therefore, it is necessary to develop anti-PEDV drugs to compensate for vaccines. This study confirmed the anti-PEDV effect of licorice extract (Le) in vitro and in vivo. Le inhibited PEDV replication in a dose-dependent manner in vitro. By exploring the effect of Le on the life cycle of PEDV, we found that Le inhibited the attachment, internalization, and replication stages of the virus. In vivo, all five piglets in the PEDV-infected group died within 72 h. In comparison, the Le-treated group had a survival rate of 80 % at the same time, with significant relief of clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Our results suggested that Le can exert anti-PEDV effects in vitro and in vivo. Le is effective and inexpensive; therefore it has the potential to be developed as a new anti-PEDV drug.


Subject(s)
Coronavirus Infections , Glycyrrhiza , Plant Extracts , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Swine , Diarrhea
3.
mSystems ; 9(1): e0084223, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38108282

ABSTRACT

Limited information on the virome and bacterial community hampers our ability to discern systemic ecological risk factors that cause cattle diarrhea, which has become a pressing issue in the control of disease. A total of 110 viruses, 1,011 bacterial genera, and 322 complete viral genomes were identified from 70 sequencing samples mixed with 1,120 fecal samples from 58 farms in northeast China. For the diarrheic samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, and geographic distribution in relation to different disease-associated ecological factors; the abundance of identified viruses and bacteria was significantly correlated with the host factors of clinical status, cattle type, and age, and with environmental factors such as aquaculture model and geographical location (P < 0.05); a significant interaction occurred between viruses and viruses, bacteria and bacteria, as well as between bacteria and viruses (P < 0.05). The abundance of SMB53, Butyrivibrio, Facklamia, Trichococcus, and Turicibacter was significantly correlated with the health status of cattle (P < 0.05). The proportion of BRV, BCoV, BKV, BToV, BoNoV, BoNeV, BoAstV, BEV, BoPV, and BVDV in 1,120 fecal samples varied from 1.61% to 12.05%. A series of significant correlations were observed between the prevalence of individual viruses and the disease-associated ecological factors. A genome-based phylogenetic analysis revealed high variability of 10 bovine enteric viruses. The bovine hungarovirus was initially identified in both dairy and beef cattle in China. This study elucidates the fecal virome and bacterial community signatures of cattle affected by diarrhea, and reveals novel disease-associated ecological risk factors, including cattle type, cattle age, aquaculture model, and geographical location.IMPORTANCEThe lack of data on the virome and bacterial community restricts our capability to recognize ecological risk factors for bovine diarrhea disease, thereby hindering our overall comprehension of the disease's cause. In this study, we found that, for the diarrheal samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, configuration, and geographic distribution in relation to different disease-associated ecological factors. A series of significant correlations were observed between the prevalence of individual viruses and the disease-associated ecological factors. Our study aims to uncover novel ecological risk factors of bovine diarrheal disease by examining the pathogenic microorganism-host-environment disease ecology, thereby providing a new perspective on the control of bovine diarrheal diseases.


Subject(s)
Cattle Diseases , Viruses , Animals , Cattle , Virome , Phylogeny , Viruses/genetics , Bacteria/genetics , Diarrhea/epidemiology , Cattle Diseases/epidemiology , Risk Factors
4.
Vet Microbiol ; 274: 109570, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108347

ABSTRACT

Since November 2016, severe infectious diseases characterized by gout and kidney swelling and caused by goose astrovirus (GoAstV) have affected goslings in major goose-producing areas in China. In 2021, a similar serious infectious disease broke out in commercial goose farms in Heilongjiang Province, China. In this study, strain HLJ2021 was successfully isolated from goose embryos. Electron microscopy showed that the viral particles are spherical, with a diameter of about 28 nm. The complete genomic length of strain HLJ2021 is 7210 nt, and it encodes three viral proteins. A phylogenetic analysis showed that strain HLJ2021 belongs to GoAstV-2 (G2). Compared with the two original GoAstV strains, amino acid site 540Q of the strain HLJ2021 spike domain has a mutation that affects the protein structure. One potential recombination event occurred between strains HLJ2021 and AstV/HB01/Goose/0123/19, which led to the generation of recombinant strain AstV/HN03/Goose/0402/19. Strain HLJ2021 also showed strong pathogenicity in goslings. Goslings infected with GoAstV began to die at 48 h post-infection (hpi), with a mortality rate of 83.3% at 240 hpi. At autopsy, visceral urate deposits, severe renal hemorrhage and swelling, and urate in the ureter were observed in the dead goslings. These findings extend our understanding of the evolution of GoAstV, which causes gout. The isolated GoAstV strain HLJ2021 provides a potential resource for the development of biological products for the prevention of goose gout.


Subject(s)
Astroviridae Infections , Avastrovirus , Biological Products , Gout , Poultry Diseases , Animals , Astroviridae Infections/veterinary , Phylogeny , Virulence , Uric Acid , Geese , Avastrovirus/genetics , Gout/veterinary , Viral Proteins/genetics , Amino Acids/genetics , China/epidemiology
5.
Inflammopharmacology ; 30(5): 1717-1728, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35943671

ABSTRACT

The efficacy of the sulforaphane derivative JY4 was evaluated in acute and chronic mouse models of ulcerative colitis induced by dextran sodium sulfate. Oral administration of JY4 led to significant improvements in symptoms, with recovery of body weight and colorectal length, together with reduced diarrhoea, bloody stools, ulceration of colonic tissue and infiltration of inflammatory cells. The oral bioavailability of JY4, determined by comparing oral dosing with injection into the tail vein, was 5.67%, which was comply with the idea in the intestinal function. Using a dual-luciferase reporter assay, immunofluorescence studies, western blot analysis and immunohistochemical staining, JY4 was shown to significant interfere with the NF-κB-p65 signaling pathway. By preventing the activation of NF-κB-p65, JY4 inhibited the overexpression of downstream inflammatory factors, thereby exerting an anti-inflammatory effect on the intestinal tract. This study thus provides a promising candidate drug, and a new concept for the treatment of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Anti-Inflammatory Agents/therapeutic use , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon , Dextran Sulfate/pharmacology , Disease Models, Animal , Isothiocyanates , Mice , NF-kappa B/metabolism , Sulfoxides
6.
Eur J Med Chem ; 183: 111692, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31541872

ABSTRACT

A novel series of phenothiazine derivatives containing diethanolamine, methoxyethylamine, flavonoids, and a nitric oxide (NO) donor was designed and synthesized for the treatment of breast cancer. Phenothiazine derivatives (l) did not noticeably inhibit the growth of SUM159, MDA-MB-231, MCF-7, and SKBR-3 cells, whereas phenothiazine derivatives (ll) containing the NO donor were more potent or had comparable inhibitory activity to trifluoperazine (TFP) and thioridazine against SUM159, MDA-MB-231, MCF-7, and SKBR-3 cells. Compounds 20a-c and 21a-c showed the strongest activity in SUM159, MDA-MB-231, MCF-7, and SKBR-3 cells, and more potent inhibitory activity than TFP against KG1a cells (IC50 = 1.63, 2.93, 1.14, 1.78, 2.20, and 1.20 vs. 4.58 µM). Compounds 20a and 21a had lower toxicity than compounds 20b-c and 21b-c, and inhibited colony formation in MCF-7 cells, decreased the formation of mammospheres in SUM159 cells, and inhibited the migration of MDA-MB-231 cells. Compounds 20a and 21a could inhibited pNF-κB-p65 as shown by dual-luciferase reporter assays and western blotting in MDA-MB-231 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Phenothiazines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phenothiazines/chemical synthesis , Phenothiazines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...