Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(16): eadg2352, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37075108

ABSTRACT

Spatiotemporally controllable droplet manipulation is essential in diverse applications, ranging from thermal management to microfluidics and water harvesting. Despite considerable advances, droplet manipulation without surface or droplet pretreatment is still challenging in terms of response and functional adaptability. Here, a droplet ultrasonic tweezer (DUT) based on phased array is proposed for versatile droplet manipulation. The DUT can generate a twin trap ultrasonic field at the focal point for trapping and maneuvering the droplet by changing the position of the focal point, which enables a highly flexible and precise programmable control. By leveraging the acoustic radiation force resulting from the twin trap, the droplet can pass through a confined slit 2.5 times smaller than its own size, cross a slope with an inclination up to 80°, and even reciprocate in the vertical direction. These findings provide a satisfactory paradigm for robust contactless droplet manipulation in various practical settings including droplet ballistic ejection, droplet dispensing, and surface cleaning.

2.
Nanoscale ; 15(11): 5139-5157, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36853237

ABSTRACT

Engineering surfaces or membranes that allow an efficient oil/water separation is highly desired in a wide spectrum of applications ranging from oily wastewater discharge to offshore oil spill accidents. Recent advances in biomimetics, manufacturing, and characterization techniques have led to remarkable progress in the design of various superwetting materials with special wettability. In spite of exciting progress, formulating a strategy robust enough to guide the design and fabrication of separating surfaces remains a daunting challenge. In this review, we first present an overview of the wettability theory to elucidate how to control the surface morphology and chemistry to regulate oil/water separation. Then, parallel approaches are considered for discussing the separation mechanisms according to different oil/water mixtures, and three separation types were identified including filtration, adsorption and other separation types. Finally, perspectives on the challenges and future research directions in this research area are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...