Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 44(3): 1497-1507, 2023 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-36922210

ABSTRACT

Microorganisms play an important role in the urban river nitrogen cycle. Due to the three-dimensional fluidity of river water, it is necessary to clarify the vertical distribution of community composition and nitrogen metabolism functions of microorganisms and discover how hydrodynamic factors influence microorganism sources and community composition. Based on 16S rRNA high-throughput sequencing technology, the bacteria community composition and nitrogen metabolism function of water and sediment in the North Canal at Tongzhou District Beijing City were analyzed. The effect of environmental and hydrodynamic factors on community composition and sources were studied. The results showed that the α diversity of sediment was significantly higher than that of water. Proteobacteria was the most abundant phylum, which accounted for 54.72% and 32.36% in water and sediment, respectively. Functional prediction conducted using PICRUSt2 showed that the studied North Canal had an abundance of nitrogen metabolism ability, and 47 genes related to the nitrogen cycle were obtained. Water and sediment microorganisms had a similar distribution of nitrogen metabolism functions. The copy number of genes involved with denitrification, nitrogen assimilation, and dissimilation-reduction were high, whereas the abundance of genes related to biological nitrogen fixation and nitrification were relatively low. Source tracking analysis showed that bacteria in the water that originated from upstream, neighboring sides, and sediment were 60.05%, 37.93%, and 1.05%, respectively. The amounts of bacteria in sediment that migrated from upstream, neighboring sides, and water were 50.16%, 45.55%, and 1.55%, respectively. Environmental factors, hydrodynamic conditions, and their interactions explained water bacteria community composition for 44.22%, 3.21%, and 15.60%, respectively. For sediment bacteria, the degree of explanation was 13.05%, 1.56%, and 8.51%, respectively. This indicated that environmental factors and hydrodynamic factors controlled the community composition and nitrogen cycle functions together.


Subject(s)
Bacteria , Rivers , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , Nitrogen/metabolism , Water , Geologic Sediments/microbiology
2.
Biomed Pharmacother ; 150: 113012, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35658246

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignant tumor highly prevalent in Southeast Asia. The distant metastasis and disease recurrence are still unsolved clinical problems. In recent years, traditional Chinese medicine (TCM) monomers have become significantly attractive due to their advantages. Using high throughput drug sensitivity screening, we identified gambogic acid (GA) as a common TCM monomer displaying multiple anti-NPC effects. GA could effectively inhibit the proliferation of low differentiated cells and highly metastatic cells in NPC via inducing apoptosis and G2/M cell cycle arrest. In addition, GA obviously repressed the abilities of cell clone, migration, invasion, angiogenesis and represented satisfied synergistic effects combined with chemotherapy. Importantly, we found the elevated immune checkpoint CD47 stimulated after chemotherapy was dramatically impaired by GA treatment. Mechanically, the network pharmacology analyses unraveled that the oncogenic signaling pathways including STATs were rewired by GA treatment. Taken together, our study reveals a molecular basis and provides a rationale for GA application as the treatment regime in NPC therapy in future.


Subject(s)
Nasopharyngeal Neoplasms , Neoplasm Recurrence, Local , Cell Line, Tumor , Cell Proliferation , Humans , Monitoring, Immunologic , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Xanthones
3.
Bioinorg Chem Appl ; 2021: 4763944, 2021.
Article in English | MEDLINE | ID: mdl-34691164

ABSTRACT

Development of multiple agents has a significant impact on the cancer diagnosis and therapy. Several fluorescent dyes including near-infrared (NIR) fluorescent agents have been already well studied in the field of photodynamic therapy (PDT). In the present study, we reported a novel fluorescent dye could obviously inhibit cancer cell proliferation with slight toxic effects on the biological organism. Furthermore, it displayed selective staining on cancer cells, particularly on cancer stem cells (CSCs), rather than normal cells. Mechanically, this dye preferred to invading mitochondria of cancer cells and inducing overwhelming reactive oxygen species (ROS) production. The in vivo experiments further demonstrated that this dye could image cancer cells and even CSCs in a short-time intratumor injection manner using a zebrafish model and subsequently inhibit cancer cell proliferation after a relatively long-time drug exposure. Taken together, the future development of this agent will promise to make an essential contribution to the cancer diagnosis and therapeutics.

4.
Bioresour Technol ; 340: 125582, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34332445

ABSTRACT

The study aimed to isolate a novel strain with heterotrophic nitrification and aerobic denitrification ability and evaluate the nitrogen removal characteristics. Results showed that Ochrobactrum anthropi HND19 could remove approximately 98.6% of NH4+-N (104.3 mg·L-1) and 97.6% of NO3--N (98.6 mg·L-1), and the removal rates achieved 4.28 and 4.01 mg-N/(L·h) by heterotrophic nitrification and aerobic denitrification. The optimal incubate conditions of strain HND19 were 120 rpm (shaking speed), 5 ‰ (salinity), 30 °C (temperature), 7.5 (C/N ratio) with sodium acetate as carbon resource. And the removal efficiency of the total nitrogen (TN) realized 73.4% under the optimal conditions. Functional genes (hao, napA, nirK, norB, and nosZ) involved in the nitrogen removal processes were successfully amplified from strain HND19. These findings indicate that the strain HND19 possesses great application feasibility in treating wastewater with high-intensity nitrogen.


Subject(s)
Nitrification , Ochrobactrum anthropi , Aerobiosis , Denitrification , Heterotrophic Processes , Nitrites , Nitrogen , Ochrobactrum anthropi/genetics
5.
Bioinorg Chem Appl ; 2021: 9959634, 2021.
Article in English | MEDLINE | ID: mdl-34007265

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignant tumor in southern China, and nano Traditional Chinese Medicine (TCM) represents great potential to cancer therapy. To predict the potential targets and mechanism of polyphyllin II against NPC and explore its possibility for the future nano-pharmaceutics of Chinese medicine monomers, network pharmacology was included in the present study. Totally, ninety-four common potential targets for NPC and polyphyllin II were discovered. Gene Ontology (GO) function enrichment analysis showed that biological processes and functions mainly concentrated on apoptotic process, protein phosphorylation, cytosol, protein binding, and ATP binding. In addition, the anti-NPC effects of polyphyllin II mainly involved in the pathways related to cancer, especially in the PI3K-Akt signaling indicated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The "drug-target-disease" network diagram indicated that the key genes were SRC, MAPK1, MAPK14, and AKT1. Taken together, this study revealed the potential drug targets and underlying mechanisms of polyphyllin II against NPC through modern network pharmacology, which provided a certain theoretical basis for the future nano TCM research.

SELECTION OF CITATIONS
SEARCH DETAIL
...