Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Sci Total Environ ; 924: 171634, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38471585

ABSTRACT

In recent years, the escalating attention on Pharmaceutical and Personal Care Products (PPCPs) and Heavy Metals in urban stormwater runoff highlights the critical role of Road-deposited sediments (RDS) as a significant carrier for pollutant occurrence and transport in runoff. However, existing research has overlooked the composite characteristics of PPCPs and Heavy Metals, hampering a holistic understanding of their transformation in diverse forms within runoff. This limitation impedes the exploration of their subsequent migration and conversion properties, thereby obstructing coordinated strategies for the control of co-pollution in runoff. This study focuses on the typical PPCP sulfamethoxazole (SMX) and heavy metal Cu(II) to analyze their occurrence characteristics in the Runoff-RDS system. Kinetics and isotherm studies reveal that RDS effectively accumulates SMX and Cu(II), with both exhibiting rapid association with RDS in the early stages of runoff. The accumulation of SMX and Cu(II) accounts for over 80 % and 70 % of the total accumulation within the first 240 min and 60 min, respectively. Moreover, as runoff pH values decrease, the initially synergistic effect between the co-pollutant transforms into an antagonistic effect. In the composite system, varying pH values from 2.0 to 6.0 lead to an increase in SMX accumulation from 4.01 mg/kg to 6.19 mg/kg and Cu(II) accumulation from 0.43 mg/g to 3.39 mg/g. Compared to the single system, the composite system capacity for SMX and Cu(II) increases by 0.04 mg/kg and 0.33 mg/g at pH 4.0. However, at pH 3.0, the composite system capacity for SMX and Cu(II) decreases by 0.21 mg/kg and 0.36 mg/g, respectively. Protonation/deprotonation of SMX under different pH conditions influences electrostatic repulsion/attraction between SMX and RDS. The mechanism of RDS accumulation of SMX involves Electron Donor-Acceptor (EDA) interaction, hydrogen bond interaction, and Lewis acid-base interaction. Cu(II) enrichment on RDS includes surface complexation reaction, electrostatic interaction, and surface precipitation. Complex formation enhances the accumulation of both SMX and Cu(II) on RDS in runoff. This study elucidates the co-occurrence characteristics and mechanisms of SMX and Cu(II) co-pollution in runoff systems. The findings contribute valuable insights to understanding the existence patterns and mechanisms of co-pollution, providing a reference for investigating the migration and fate of co-pollutant in runoff. Moreover, these insights could offer guidance for the development of effective strategies to mitigate co-pollution in rainwater.

2.
Environ Sci Pollut Res Int ; 31(15): 22962-22975, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418787

ABSTRACT

As the most common filler in stormwater treatment, zeolite (NZ-Y) has good cation exchange capability and stabilization potential for the removal of heavy metal from aqueous solutions. In this study, sodium dodecyl sulfate (SDS) and NZ-Y were selected to preparing new adsorbent (SDS-NZ) by using a simple hydrothermal method. The sorption-desorption performance and mechanism of Cu(II) onto SDS-NZ were investigated. The results showed that the sorption of Cu(II) on SDS-NZ was in accordance with the pseudo-second-order kinetic model with an equilibrium time of 4 h. The sorption behavior fitted Langmuir isotherm with a saturation sorption capability of 9.03 mg/g, which was three times higher than that of NZ-Y. The modification of SDS increases the average pore size of NZ-Y by 3.96 nm, which results in a richer internal pore structure and more useful sorption sites for Cu(II) sorption. There was a positive correlation between solution pH values and sorption capability of Cu(II) in the range of 3.0-6.0. With the ionic strength increased, the sorption capability of Cu(II) onto SDS-NZ first decreased and then increased, which may be attributed to competitive sorption and compression of the electronic layer. The desorption of Cu(II) on SDS-NZ was favored by the increase in SDS concentration and ionic strength and decrease in solution pH values. The application of SDS-NZ in runoff improved the leaching risk of Cu(II). After several cycles, the ability of reused SDS-NZ to efficiently adsorb most heavy metals was verified with removal rates above 99%.


Subject(s)
Metals, Heavy , Water Purification , Zeolites , Copper/chemistry , Zeolites/chemistry , Surface-Active Agents , Rain , Water Purification/methods , Water Supply , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions
3.
J Environ Manage ; 350: 119671, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38039706

ABSTRACT

The simultaneous presence of heavy metals and surfactants in runoff induces complexation and ecological harm during migration. However, interactions between these pollutants are often overlooked in past studies. Thus, investigating heavy metal-surfactant complexes in runoff is imperative. In this work, Cu (II) and sodium dodecyl sulfate (SDS) were selected to investigate the interaction between heavy metals and surfactants due to the higher detected frequency in runoff. Through 1H NMR and FTIR observation of hydrogen atom nuclear displacement and functional group displacement of SDS, the change of SDS and Cu (II) complexation was obtained, and then the complexation form of Cu (II) and SDS was verified. The results showed that solution pH values and ionic strength had significant effects on the complexation of Cu (II). When the pH values increase from 3.0 to 6.0, the complexation efficiency of SDS with Cu (II) increased by 12.12% at low concentration of SDS, which may be attributed to the excessive protonation in the aqueous solution at acidic condition. The increase of ionic strength would inhibit the complexation reaction efficiency by 19.57% and finally reached the platform with concentration of NaNO3 was 0.10 mmol/L, which was mainly due to the competitive relationship between Na (I) and Cu (II). As a general filtering material in stormwater treatment measures, natural zeolite could affect the interaction between SDS and Cu (II) greatly. After the addition of SDS, the content of free Cu (II) in the zeolite-SDS-Cu (II) three-phase mixed system was significantly reduced, indicating that SDS had a positive effect on the removal of Cu (II) from runoff. This study is of great significance for investigating the migration and transformation mechanism of SDS and Cu (II) in the future and studying the control technology of storm runoff pollution.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Zeolites , Sodium Dodecyl Sulfate/chemistry , Rain , Water Purification/methods , Water Supply , Metals, Heavy/chemistry , Surface-Active Agents , Water Pollutants, Chemical/chemistry
4.
Sci Total Environ ; 903: 166522, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37625714

ABSTRACT

In situ bioremediation through slow-release agents can continuously degrade organic pollutants for a long time and have high application potential in solving problems such as tailing and rebound. However, the existing evaluation system is difficult to reflect the performance of bioremediation through slow-release agents, which is not conducive to the promotion of technology. It is urgent to establish a targeted evaluation system. Therefore, based on the multi-criteria decision-making method (MCDA), a comprehensive evaluation model was established. The evaluation index system was constructed for bioremediation through slow-release agents consisting of 16 indicators including pollutant degradation rate, agent preparation cost, engineering operation and maintenance cost, secondary pollution, long-term degradation stability, slow release time, slow release stability, increase in functional microbial flora, increase in total DNA content, agent particle size, solid agent morphology, liquid agent viscosity, dispersibility in aqueous phase, zeta potential, operability of agent preparation, and engineering operation management difficulty. Then, the weight of the indicators was determined by using the best-worst method (BWM), and evaluation criteria was established based on relevant norms and literature. Both and the indicators aggregation simple additive weighting (SAW) method constitute a quantitative evaluation model. The above content together constitutes a new evaluation system for biological remediation on organic pollution in groundwater using slow-release agents, which was defined as AOBS evaluation system. In order to verify the rationality and scientificity of the evaluation system, a typical bioremediation slow-release agent was evaluated using the established AOBS evaluation system. The results showed that the evaluation system could reasonably and comprehensively evaluate bioremediation through slow-release agents and provide suggestions for agent improvement.

5.
Nanoscale ; 15(16): 7352-7364, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37022348

ABSTRACT

The rational design of photocatalytic nanomaterials with unique structures is critical for remediating environmental problems and thus reducing ecological risks. In this work, we employed H2 temperature-programmed reduction to modify MFe2O4 (M = Co, Cu, and Zn) photocatalysts for obtaining additional oxygen vacancies. After activation of PMS, naphthalene and phenanthrene degradation rates in the soil phase were increased by 3.24-fold and 1.39-fold, respectively, and 1.38-fold for naphthalene in the aqueous phase by H-CoFe2O4-x. The extraordinary photocatalytic activity is attributed to the oxygen vacancies on the H-CoFe2O4-x surface, which promote electron transfer and thus enhance the redox cycle from Co(III)/Fe(III) to Co(II)/Fe(II). In addition, oxygen vacancies are used as electron traps to hinder the recombination of photogenerated carriers and accelerate the generation of hydroxyl and superoxide radicals. Quenching tests showed that the addition of p-benzoquinone resulted in the greatest decrease in the degradation rate of naphthalene (inhibition of about 85.5%), demonstrating that O2˙- radicals are the main active species in the photocatalytic degradation of naphthalene. H-CoFe2O4-x showed improved degradation performance in synergy with PMS (82.0%, kapp = 0.00714 min-1) while maintaining excellent stability and reusability. Hence, this work provides a promising approach for the design of efficient photocatalysts to degrade persistent organic pollutants in soil and aqueous environments.

6.
Environ Sci Pollut Res Int ; 30(16): 46940-46949, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36735139

ABSTRACT

Particulate matter (PM), as an important carrier of carrying and transporting runoff pollutants, can significantly affect the behavior and removal efficiency of pollutants in bioretention facilities. In order to control the pollution caused by naphthalene in bioretention facilities, the removal efficiency and migration characteristics of naphthalene were systematically investigated under the influences of PM. The results showed that the removal efficiency of naphthalene was 74 ~ 97% in bioretention facilities under the influences of PM. With the higher concentration, the lower rainfall return period, and the longer antecedent drying period, the removal efficiency of naphthalene in each medium layer were higher. Furthermore, the PM could increase the naphthalene adsorption capacity onto medium in the first 10 cm depth, which showed more than 80% removal efficiency and lower mobility of naphthalene. The removal efficiency of naphthalene was significantly higher (90 ~ 97%), when the particle size and concentration of PM were 0 ~ 45 µm and 500 mg/L, respectively. This study investigated the important role of PM for naphthalene removal in bioretention facilities, and provided effective guidelines for runoff pollution control, design of stormwater facilities, and assessment risk of naphthalene.


Subject(s)
Environmental Pollutants , Particulate Matter , Naphthalenes , Particle Size , Rain
7.
Sci Total Environ ; 866: 161397, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36608825

ABSTRACT

Reactive oxygen species (ROS) are ubiquitous in the natural environment that are generated by chemical or biochemical processes. Plastic rainwater facilities, as an important part of modern rainwater systems, are inevitably deteriorated by ROS. As a consequence, microplastics will be released. However, information on how ROS affect the ageing characteristics of plastic rainwater facilities and the subsequent microplastic release behavior is still insufficient. To address this knowledge gap, Fenton reagents were used to simulate the reactive oxygen species (ROS) induced ageing process of three typical plastic rainwater components (rainwater pipe, made of polyvinyl chloride; modular storage tank, made of polypropylene; inspection well, made of high-density polyethylene) and the subsequent microplastic release behavior. After 6 days of Fenton ageing, an increase in sharpness, holes, and fractures on the rainwater facilities' surface was observed by scanning electron microscope (SEM). The functional group changes on the rainwater facilities' surface were analyzed by Fourier transform infrared spectrometer (FTIR) and two-dimensional correlation spectroscopy (2D-COS) and compared with the results of X-ray photoelectron spectroscopy (XPS). During the ageing process, oxygen-containing functional groups were generated and the carbon chains were broken, which promoted peeling and the release of microplastics. The amount of released microplastics (ranging from 158 to 6617 items/g facility) varied with the type of rainwater facilities, and the order was modular storage tank > inspection well > rainwater pipe. The release amount increased with ageing time, and a significant linear relationship was observed (r2 > 0.91). The particle size of the released microplastics ranged from 2 to 1362 µm, among which 10-30 µm particles accounted for the largest proportion (62.7 %). The release amount increased exponentially with decreasing particle size (r2 > 0.71). This study indicates that large amounts of microplastics could be released from plastic rainwater components during ROS-induced ageing.

8.
J Environ Manage ; 329: 117042, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36566735

ABSTRACT

As one of the commonly used stormwater management measures, permeable pavement system (PPS) played a prominent role in controlling runoff pollution and alleviating urban waterlogging. In this study, new enhanced infiltration materials (construction waste brick, coal gangue, activated carbon, multi-walled carbon nanotube, multi-layer graphene) were applied in PPS and the control efficiency and mechanism of typical heavy metals (HMs, Mn2+, Pb2+, Zn2+, Cu2+, Cd2+, Ni2+) was investigated in runoff. Furthermore, the influences of different rainfall intensities and antecedent dry periods on HMs removal by PPS were evaluated. The results showed that all PPS with enhanced infiltration materials have little leaching effect on HMs (<3 µg/L). All the selected enhanced infiltration materials meet the requirements of PPS. The concentration of HMs in the effluent of PPS dropped sharply first, followed rebounded and then maintained at a stable range. Activated carbon PPS (AC), Multi-walled carbon nanotube PPS (MCN), and Multi-layer graphene PPS (MG) could significantly improve the control effect of PPS on nearly all selected HMs. The average removal rates of AC, MCN and MG for six HMs were 75.48%-99.35%, 81.30%-97.59%, and 73.03%-99.33%, respectively. Compared with Traditional PPS (TR), the effluent concentrations of HMs in construction waste brick PPS (CW) and coal gangue PPS (CG) were relatively higher and unstable. AC, CN and MG could adapt to different rainfall conditions and the maximum removal rates of most HMs exceed to 99%. With antecedent dry periods increased, the control effect of HMs was significantly improved. The influences of the antecedent drying period on HMs removal followed as: CW>CG>TR>MG>CN>AC. This study provided novel methods to eliminating HMs in runoff and provides implications for the design of PPS.


Subject(s)
Graphite , Metals, Heavy , Nanotubes, Carbon , Water Pollutants, Chemical , Charcoal , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Coal , Environmental Monitoring
9.
Microvasc Res ; 144: 104423, 2022 11.
Article in English | MEDLINE | ID: mdl-35995234

ABSTRACT

BACKGROUND: Circulating insulin-like growth factor binding protein 2 (IGFBP-2) is associated with metabolic changes in both physiological and pathological conditions. The aim of this study was to investigate the correlation between IGFBP-2 related immunoreactivity in serum and arterial stiffness in a healthy Chinese population. METHODS: In this cross-sectional study, 360 healthy participants aged 37-87 years were recruited from 1500 and were divided into three groups according to serum IGFBP-2 related immunoreactivity (Tertile I, 25.437 ng/ml-120.870 ng/ml; Tertile II, 120.871 ng/ml-161.914 ng/ml; Tertile III, 161.915 ng/ml-321.636 ng/ml). Arterial stiffness was evaluated by measuring the brachial-ankle pulse wave velocity (baPWV), ankle-brachial index (ABI), and carotid intima-media thickness (cIMT). The association between IGFBP-2 related immunoreactivity and arterial stiffness was estimated by multiple stepwise regression. RESULTS: Compared with the other two groups population, the individuals in Tertile I had significantly older age (62.66 ± 13.30 years, P < 0.01), lower level of triglyceride (1.08 ± 0.70 mmol/l, P < 0.01) and E/A (peak velocity of early filling and preak velocity of atrial filling ratio) (0.90 ± 0.33, P < 0.05). IGFBP-2 related immunoreactivity was inversely related with baPWV in the total population (r = -0.171, P < 0.01) and in Tertile I (r = -0.275, P < 0.01). After adjusting for age and the other confounders, no association was found between IGFBP-2 related immunoreactivity and baPWV in the total population. However, In Tertile I, reduced IGFBP-2 related immunoreactivity in serum was an independent risk factor of baPWV acceleration in three different adjustment models: Model 1 (no adjustment, P < 0.01), Model 2 (adjusted for age, P < 0.05), and Model 3 (adjusted for all variables, P < 0.05). CONCLUSION: IGFBP-2 related immunoreactivity in serum is inversely associated with baPWV in a healthy Chinese population. This association did not change after adjustment for conventional risk factors for cardiovascular diseases in the subjects with the lowest IGFBP-2 related immunoreactivity. Consequently, reduction of IGFBP-2 related immunoreactivity may be a predictor of arterial stiffness. IGFBP-2 seems to be a potential intervention target in early atherosclerosis.


Subject(s)
Vascular Stiffness , Ankle Brachial Index , Carotid Intima-Media Thickness , China/epidemiology , Cross-Sectional Studies , Humans , Insulin-Like Growth Factor Binding Protein 2 , Pulse Wave Analysis , Risk Factors , Vascular Stiffness/physiology
10.
J Hazard Mater ; 435: 128992, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35489317

ABSTRACT

Perylene diimide and its derivatives are promising photocatalysts for clean and efficient production, but their practical application in the field of photocatalysis is still limited by the rapid photogenerated charge recombination. In this work, the confined photocatalysts were synthesized by using a gas-phase self-assembly method and comparing the morphology and photocatalytic properties of different photocatalysts after the confinement of carbon nanotubes. The confinement effect of carbon nanotubes acts to stabilize perylene diimide. Electrostatic interaction formed by a wide range of dispersion forces is dominant in the process of stabilization. Benefitting from the three-dimensional electron transfer pathway formed by the conjugation of perylene diimide with a large number of π electrons to the carbon nanotubes plane, the confined photocatalyst shows the pseudo-first-order kinetic constant k of 1.106 h-1 for the photocatalytic degradation of diclofenac under light, which is 6.11 times higher than that of perylene diimide. The electron transfer created an internal electric field at the interface from carbon nanotubes to perylene diimide, which greatly accelerated the separation of photogenerated electron-hole pairs and improved the photocatalytic activity. This study further expands the applicability of perylene diimide in the field of photocatalysis and provides a new approach for water environment treatment.


Subject(s)
Nanotubes, Carbon , Perylene , Water Purification , Catalysis , Diclofenac
11.
Bioresour Technol ; 349: 126803, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35124218

ABSTRACT

The plant carbon source and sulfur were selected as the denitrification electron donors and filled in the internal water storage zone (IWSZ) of bioretention system to establish excellent mixotrophic denitrification system, which was beneficial to waste recycling and showed very high nitrate nitrogen removal efficiency (approximately 94%). The ammonia nitrogen, total nitrogen, and chemical oxygen demand removal efficiencies could reach 79.41%, 85.89%, and 74.07%, respectively. Mechanism study revealed the synergistic degradation effect was existed between acetic acid released from plant carbon source and the generated sulfate, which improved the S/CH3COOH mediated nitrate nitrogen removal reactions. Autotrophic denitrification occurred mainly in the upper layer of IWSZ, and the dominant bacteria were Thiobacillus. While in the lower layer, the dominant bacteria were mainly related to organic matter utilization and heterotrophic denitrification. The abundance of narG, nirK, nirS, and nosZ functional genes in the upper layer was significantly higher than the lower layers.


Subject(s)
Denitrification , Nitrogen , Autotrophic Processes , Bioreactors , Carbon , Denitrification/genetics , Nitrates/metabolism , Nitrogen/metabolism , Sulfur/metabolism
12.
Nanoscale ; 14(8): 2990-2997, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35166288

ABSTRACT

The traditional synthesis of ammonia is an industrial process with high energy consumption that is not environmentally friendly; thus, it is urgent to develop cost-effective approaches to synthesize ammonia under ambient conditions. In recent years, the photochemical synthesis of ammonia has become a hot research frontier. In this mini review, we summarize the recent advances in materials sciences for photocatalytic nitrogen fixation. Beyond nitrogen fixation, we talk about an alternative for artificial ammonia synthesis and coupling reactions with other reactions for the synthesis of other high-value chemicals. The results and findings of this review will help the development of ammonia synthesis and the synthesis of other high-value chemicals.

13.
Arch Gynecol Obstet ; 305(3): 737-747, 2022 03.
Article in English | MEDLINE | ID: mdl-34417839

ABSTRACT

PURPOSE: The relationship between transforming growth factor ß superfamily members (GDF11 and BMP4) and bone metabolism remains controversial. The aim of this study was to investigate the association between serum GDF11 and BMP4 levels and lumbar spine bone mineral density (LBMD) in a cohort of postmenopausal Chinese women. METHODS: This was a non-prospective cross-sectional study of 350 postmenopausal women with a mean age of 63.13 ± 8.66 years who came from Shenyang, China. LBMD was measured using dual-energy X-ray absorptiometry. Serum GDF11 and BMP4 concentrations were detected using a sandwich enzyme immunoassay kit. Pearson's correlation analysis and regression analyses were carried out to investigate the relationships between LBMD and serum GDF11 and BMP4 levels. RESULTS: A linear association between LBMD and serum LgGDF11 concentration was observed after adjusting for numerous confounders (P = 0.018). In addition, the osteoporosis (OP) was inversely related to LgGDF11 and the odds ratios for postmenopausal women with lumbar OP in LgGDF11 quartile group 2, group 3, and group 4 were 0.46 (95% CI 0.23-0.90, P < 0.05), 0.41 (95% CI 0.20-0.84, P < 0.05), and 0.30 (95% CI 0.14-0.63, P < 0.01), respectively (P = 0.001 for the trend), when compared to the highest quartile of LgGDF11 after adjustments for many confounding variables in this study. CONCLUSIONS: This study showed that serum GDF11 levels were linearly related to LBMD, and it was also revealed that serum GDF11 levels were significantly associated with lumbar OP in postmenopausal women. However, serum BMP4 levels were not associated with LBMD and lumbar OP.


Subject(s)
Bone Density , Osteoporosis, Postmenopausal , Absorptiometry, Photon , Aged , Bone Morphogenetic Protein 4 , Bone Morphogenetic Proteins , Cross-Sectional Studies , Female , Growth Differentiation Factors , Humans , Lumbar Vertebrae/diagnostic imaging , Middle Aged , Postmenopause , Transforming Growth Factor beta
14.
Menopause ; 28(10): 1157-1165, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34342286

ABSTRACT

OBJECTIVES: The aim of this study was to investigate whether higher serum uric acid (SUA) levels within the physiological range were associated with changes in lumbar spine bone mineral density (LBMD) in postmenopausal women without existing lumbar spine osteoporosis after a longitudinal follow-up of 3.09 years, and to further confirm the relationship between SUA and bone mineral density (BMD) in other sites such as femoral neck, total hip, and trochanter at follow-up. METHODS: A longitudinal study of 175 healthy postmenopausal women without osteoporosis was conducted in Shenyang, China. BMD of the lumbar spine, femoral neck, total hip, and trochanter were measured using dual-energy x-ray absorptiometry at each visit. Pearson's correlation analysis and regression analyses were performed to determine any associations. RESULTS: There were positive correlations between baseline SUA and BMD of the lumbar spine (P = 0.03), total hip (P = 0.04), and trochanter (P = 0.04). Moreover, higher baseline SUA levels were independently associated with LBMD decline and the odds ratio of the baseline SUA of the third quartile group was 0.12 (95% confidence interval, 0.02-0.70, P < 0.05), with P = 0.23 for the trend in baseline SUA when compared with participants in the lowest, first quartile group after adjustment for many potential confounding variables. CONCLUSIONS: Higher SUA levels within the normal physiological range were independently associated with decreased LBMD, and SUA levels were positively related to the BMD of the lumbar spine, total hip, and trochanter in healthy Chinese postmenopausal women.


Subject(s)
Osteoporosis, Postmenopausal , Uric Acid , Absorptiometry, Photon , Bone Density , China , Female , Follow-Up Studies , Humans , Longitudinal Studies , Lumbar Vertebrae/diagnostic imaging , Postmenopause
15.
Int J Gen Med ; 14: 2117-2125, 2021.
Article in English | MEDLINE | ID: mdl-34079353

ABSTRACT

BACKGROUND: Electromechanical coupling may play a significant role in the association between abnormal myocardial mechanics and heterogeneity of repolarization. This study sought to assess the potential relationship between the left atrial volume index (LAVI), which is an important marker of cardiac diastolic function, and ventricular repolarization variables, such as the QT interval, Tpeak-to-Tend (Tpe) interval and Tpe/QT ratio, in an apparently healthy Chinese population. METHODS: This was a community-based cross-sectional study conducted in Shenyang, China. A total of 414 healthy subjects aged 35-91 years, including 186 men (44.9%), were enrolled. In addition to performing clinical and laboratory measurements, all subjects underwent comprehensive echocardiography and standard 12-lead electrocardiography. Echocardiographic and electrocardiographic results were analysed separately and in a blinded fashion. Correlation and regression analyses were applied to determine associations. RESULTS: Subjects were divided into four groups according to quartile of LAVI levels (<16.0, 16.0-18.9, 19.0-22.5 and >22.5 mL/m2). Ventricular repolarization variables, such as QT interval and QTc interval, gradually increased with the progression from low to high LAVI levels (P<0.05). LAVI was positively and significantly correlated with the QT interval, the QTc interval, and the Tpe interval (P<0.01). After adjusting for age and other possible confounders, LAVI showed significant and independent associations with the QT interval and the QTc interval (P<0.001; P=0.003). CONCLUSION: Echocardiographic LAVI is linearly associated with ventricular repolarization variables even in healthy people.

18.
BMC Cardiovasc Disord ; 20(1): 497, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33238890

ABSTRACT

BACKGROUND: Systematic investigation and analysis of cardiovascular health status (CVHS) of Chinese women is rare. This study aimed to assess CVHS and atherosclerotic cardiovascular disease (ASCVD) burden in the Chinese women physicians (CWP) and community-based non-physician cohort (NPC). METHODS: In this prospective, multicenter, observational study, CVHS using the American Heart Association (AHA) defined 7 metrics (such as smoking and fasting glucose) and ASCVD risk factors including hypertension, hyperlipidemia and type-2 diabetes were evaluated in CWP compared with NPC. RESULTS: Of 5832 CWP with a mean age of 44 ± 7 years, only 1.2% achieved the ideal CVHS and 90.1% showed at least 1 of the 7 AHA CVHS metrics at a poor level. Total CVHS score was significantly decreased and ASCVD risk burden was increased in postmenopausal subjects in CWP although ideal CVHS was not significantly influenced by menopause. Compared to 2596 NPC, fewer CWP had ≥ 2 risk factors (8% vs. 27%, P < 0.001); CWP scored significantly higher on healthy factors, a composite of total cholesterol, blood pressure, fasting glucose (P < 0.001), but, poorly on healthy behaviors (P < 0.001), specifically in the physical activity component; CWP also showed significantly higher levels of awareness and rates of treatment for hypertension and hyperlipidemia, but, not for type-2 diabetes. CONCLUSION: Chinese women's cardiovascular health is far from ideal and risk intervention is sub-optimal. Women physicians had lower ASCVD burden, scored higher in healthy factors, but, took part in less physical activity than the non-physician cohort. These results call for population-specific early and improved risk intervention.


Subject(s)
Atherosclerosis/epidemiology , Health Status , Physicians, Women , Women's Health , Women, Working , Adult , Atherosclerosis/diagnosis , Atherosclerosis/prevention & control , China/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/therapy , Dyslipidemias/epidemiology , Dyslipidemias/therapy , Healthy Lifestyle , Heart Disease Risk Factors , Humans , Hypertension/epidemiology , Hypertension/therapy , Male , Menopause , Middle Aged , Preventive Health Services , Prospective Studies , Protective Factors , Risk Assessment , Risk Reduction Behavior , Sex Factors
19.
J Hazard Mater ; 398: 122897, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32516728

ABSTRACT

Natural sponge is an ancient marine organism with a single lamellar structure, on which there are abundant porous channels to compose full-fledged spatial veins. Illumined by the natural spongy system, herein, the Cl doped surface defective graphite carbon nitride (g-C3N4-xClx) was constructed through microwave etching. In this process, microwave with HCl was employed to produce surface defects and peel bulk g-C3N4 to form natural spongy structured g-C3N4-xClx with three-dimensional networks. The spongy structure of the photocatalyst could provide abundant and unobstructed pathways for the transfer and separation of electron-hole pairs, and it was beneficial for photocatalytic reaction. The spongy defective g-C3N4-xClx achieved excellent degradation of diclofenac sodium (100%), bisphenol A (88.2%), phenol (85.7%) and methylene blue (97%) solution under simulated solar irradiation, respectively. The chlorine atoms were introduced into the g-C3N4 skeleton in microwave field with HCl, forming C-Cl bonds and surface polarization field, which could significantly accelerate the separation of photogenerated electrons and holes. As an efficient and universal approach, microwave etching can be generally used to create surface defects for most photocatalysts, which may have potential applications in environmental purification, energy conversion and photodynamic therapy.

20.
Ther Adv Respir Dis ; 14: 1753466620921751, 2020.
Article in English | MEDLINE | ID: mdl-32401159

ABSTRACT

BACKGROUND: Cathepsin B (CTSB) and cystatin C (CYSC) are new biomarkers for several physiological and pathological processes as their activities increase with age. The aim of this study was to explore population-level associations between serum CTSB and CYSC with an age-related pulmonary subclinical state. METHODS: We examined 401 healthy participants (aged 36-87 years, of which 44.3% were male) in northern Chinese cities. We used a standard spirometer to determine lung function. Serum CTSB and CYSC levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: For all participants, serum CTSB was related to maximum vital capacity (VC MAX), forced vital capacity (FVC), forced expiratory volume in 1 s, peak expiratory flow, forced expiratory flow at 25% of FVC, forced expiratory volume in 3 s (FEV3), and inspiratory vital capacity (VC IN). These associations were lost after full adjustment. CYSC remained significantly associated with inspiratory capacity (IC), breath frequency (BF; p < 0.001), minute ventilation (MV), the ratio of FEV3 and FVC (FEV3%FVC), and expiratory reserve volume (p < 0.05) after adjusting for all other possible confounders. In males, serum CYSC levels exhibited significant and independent associations with FVC, FEV3 (p < 0.05), and IC (p < 0.001) and serum CTSB levels exhibited significant and independent associations with BF (p < 0.05). CONCLUSIONS: Our results confirmed serum CYSC concentration associations with an age-related lung function in healthy people. However, the association between serum CTSB and lung function was not well confirmed. Serum measurements of CYSC may provide valuable predictors of pulmonary function in healthy people, especially healthy elderly adults. The reviews of this paper are available via the supplemental material section.


Subject(s)
Cathepsin B/blood , Cystatin C/analysis , Lung Diseases/blood , Lung/physiopathology , Adult , Age Factors , Aged , Aged, 80 and over , Asian People , Asymptomatic Diseases , Biomarkers/blood , China/epidemiology , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Health Status , Humans , Lung Diseases/diagnosis , Lung Diseases/ethnology , Lung Diseases/physiopathology , Male , Middle Aged , Predictive Value of Tests , Spirometry
SELECTION OF CITATIONS
SEARCH DETAIL
...