Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 597(14): 1868-1879, 2023 07.
Article in English | MEDLINE | ID: mdl-37259581

ABSTRACT

Using a zebrafish ionocyte model, transcriptomics and genetic analyses were performed to identify pathways and genes involved in cell quiescence-proliferation regulation. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analyses revealed that genes involved in transcription regulation, cell cycle, Foxo signalling and Wnt signalling pathway are enriched among the up-regulated genes while those involved in ion transport, cell adhesion and oxidation-reduction are enriched among the down-regulated genes. Among the top up-regulated genes is FK506-binding protein 5 (Fkbp5). Genetic deletion and pharmacological inhibition of Fkbp5 abolished ionocyte reactivation and impaired Akt signalling. Forced expression of a constitutively active form of Akt rescued the defects caused by Fkbp5 inhibition. These results uncover a key role of Fbkp5 in regulating the quiescence-proliferation decision via Akt signalling.


Subject(s)
Proto-Oncogene Proteins c-akt , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation , Epithelium/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
2.
Biochem Biophys Res Commun ; 643: 121-128, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36596263

ABSTRACT

Glucagon receptor plays an important role in the regulation of glucose metabolism. Studies have revealed that glucagon receptor antagonism is a potential effective treatment for diabetes. However, the functions of GCGR have not been fully illustrated. Although two Gcgr truncation knockout mice models have been widely used for GCGR function studies, truncated gene may remain neomorphic and/or dominant-negative function. In this study, we took the advantages of Crispr-Cas9 technique and generated a novel allele of GCGR in the mouse that yields complete loss of GCGR protein. Our studies reveal that complete deletion of Gcgr results in hyperglucagonemia, α-cell hyperplasia, improvement of glucose tolerance. These results are similar to the Gcgr-truncated mutation in mice. Hence, we provide a novel strain of GCGR knockout mice for the GCGR function studies.


Subject(s)
CRISPR-Cas Systems , Receptors, Glucagon , Animals , Mice , Receptors, Glucagon/genetics , Hyperplasia/genetics , Glucagon/genetics , Glucagon/metabolism , Mice, Knockout
3.
J Biol Chem ; 298(12): 102665, 2022 12.
Article in English | MEDLINE | ID: mdl-36334626

ABSTRACT

The glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under preclinical and clinical development. However, GCGR antagonism, as well as genetically engineered GCGR deficiency in animal models, are accompanied by α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in α cells following GCGR disruption, we performed single cell sequencing of α cells isolated from control and gcgr-/- (glucagon receptor deficient) zebrafish. Interestingly, beyond the α-cell hyperplasia, we also found that the expression of gcga, gcgb, pnoca, and several glucagon-regulatory transcription factors were dramatically increased in one cluster of gcgr-/- α cells. We further confirmed that glucagon mRNA was upregulated in gcgr-/- animals by in situ hybridization and that glucagon promoter activity was increased in gcgr-/-;Tg(gcga:GFP) reporter zebrafish. We also demonstrated that gcgr-/- α cells had increased glucagon protein levels and increased granules after GCGR disruption. Intriguingly, the increased mRNA and protein levels could be suppressed by treatment with high-level glucose or knockdown of the pnoca gene. In conclusion, these data demonstrated that GCGR deficiency not only induced α-cell hyperplasia but also increased glucagon expression in α cells, findings which provide more information about physiological changes in α-cells when the GCGR is disrupted.


Subject(s)
Glucagon , Receptors, Glucagon , Animals , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Hyperplasia , RNA, Messenger
4.
Clin Transl Med ; 12(11): e1091, 2022 11.
Article in English | MEDLINE | ID: mdl-36314066

ABSTRACT

BACKGROUND: The melanocortin receptor accessory proteins (MRAP1 and MRAP2) are well-known endocrine regulators for the trafficking and signalling of all five melanocortin receptors (MC1R-MC5R). The observation of MRAP2 on regulating several non-melanocortin G protein-coupled receptors (GPCRs) has been sporadically reported, whereas other endogenous GPCR partners of the MRAP protein family are largely unknown. METHODS: Here, we performed single-cell transcriptome analysis and drew a fine GPCR blueprint and MRAPs-associated network of two major endocrine organs, the hypothalamus and adrenal gland at single-cell resolution. We also integrated multiple bulk RNA-seq profiles and single-cell datasets of human and mouse tissues, and narrowed down a list of 48 GPCRs with strong endogenous co-expression correlation with MRAPs. RESULTS: 36 and 46 metabolic-related GPCRs were consequently identified as novel interacting partners of MRAP1 or MRAP2, respectively. MRAPs exhibited protein-protein interactions and varying pharmacological properties on the surface translocation, constitutive activities and ligand-stimulated downstream signalling of these GPCRs. Knockdown of MRAP2 expression by hypothalamic administration of adeno-associated virus (AAV) packed shRNA stimulated body weight gain in mouse model. Co-injection of corticotropinreleasing factor (CRF), the agonist of corticotropin releasing hormone receptor 1 (CRHR1), suppressed feeding behaviour in a MRAP2-dependent manner. CONCLUSIONS: Collectively, our study has comprehensively elucidated the complex GPCR networks in two major endocrine organs and redefined the MRAP protein family as broad-spectrum GPCR modulators. MRAP proteins not only serve as a vital endocrine pivot on the regulation of global GPCR activities in vivo that could explain the composite physiological phenotypes of the MRAP2 null murine model but also provide us with new insights of the phenotyping investigation of GPCR-MRAP functional complexes.


Subject(s)
Carrier Proteins , Receptors, Melanocortin , Animals , Humans , Mice , Receptors, Melanocortin/genetics , Receptors, Melanocortin/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Melanocortins/metabolism , Adrenal Glands/metabolism , Hypothalamus/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
5.
Int J Mol Sci ; 21(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979106

ABSTRACT

The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid ß-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor's physiological functions.


Subject(s)
Metabolic Networks and Pathways/genetics , Receptors, Glucagon/genetics , Transcriptome/genetics , Zebrafish/genetics , Animals , Gene Expression Profiling/methods , Glucose/genetics , Glucose/metabolism , Liver/metabolism , Liver/physiology , Receptors, Glucagon/metabolism , Signal Transduction/genetics , Zebrafish/metabolism
6.
Front Cell Dev Biol ; 8: 605979, 2020.
Article in English | MEDLINE | ID: mdl-33520988

ABSTRACT

The glucagon receptor (GCGR) is activated by glucagon and is essential for glucose, amino acid, and lipid metabolism of animals. GCGR blockade has been demonstrated to induce hypoglycemia, hyperaminoacidemia, hyperglucagonemia, decreased adiposity, hepatosteatosis, and pancreatic α cells hyperplasia in organisms. However, the mechanism of how GCGR regulates these physiological functions is not yet very clear. In our previous study, we revealed that GCGR regulated metabolic network at transcriptional level by RNA-seq using GCGR mutant zebrafish (gcgr -/-). Here, we further performed whole-organism metabolomics and lipidomics profiling on wild-type and gcgr -/- zebrafish to study the changes of metabolites. We found 107 significantly different metabolites from metabolomics analysis and 87 significantly different lipids from lipidomics analysis. Chemical substance classification and pathway analysis integrated with transcriptomics data both revealed that amino acid metabolism and lipid metabolism were remodeled in gcgr-deficient zebrafish. Similar to other studies, our study showed that gcgr -/- zebrafish exhibited decreased ureagenesis and impaired cholesterol metabolism. More interestingly, we found that the glycerophospholipid metabolism was disrupted, the arachidonic acid metabolism was up-regulated, and the tryptophan metabolism pathway was down-regulated in gcgr -/- zebrafish. Based on the omics data, we further validated our findings by revealing that gcgr -/- zebrafish exhibited dampened melatonin diel rhythmicity and increased locomotor activity. These global omics data provide us a better understanding about the role of GCGR in regulating metabolic network and new insight into GCGR physiological functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...