Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 123: 169-182, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521982

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NPAHs) attract continuous attention due to their outstanding carcinogenicity and mutagenicity. In order to investigate the diurnal variations, sources, formation mechanism, and health risk assessment of them in heating season, particulate matter (PM) were collected in Beijing urban area from December 26, 2017 to January 17, 2018. PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry (GC-MS) . Average daily concentrations of PAHs and NPAHs were (78 ± 54) ng/m3 and (783 ± 684) pg/m3, respectively. The concentrations of them were significantly higher at nighttime than at daytime, and NPAHs concentrations were 1-2 orders of magnitude lower than PAHs concentrations. In the heating season, the dominant species of PAHs include benzo[b]fluoranthene, fluoranthene, pyrene, and chrysene, while 9-nitroanthracene, 2+3-nitrofluoranthene, and 2-nitropyrene were dominant species for NPAHs. NPAHs were found to have a single peak during heating and to be primarily distributed in the 0.4-0.7 µm particle size. Primary emissions such as biomass burning, coal combustion, and traffic emissions were the major sources of PAHs. NPAHs were produced by the primary source of vehicle emissions and the secondary reaction triggered by OH radicals, as well as biomass burning during daytime. According to the health risk assessment, the total carcinogenic risk was higher in adults than in children. While upon oral ingestion, the carcinogenic risk in children was higher than that of adults, but the risk of adults was higher than children through skin contact and respiratory inhalation.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Adult , Child , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Nitrates/analysis , Air Pollutants/analysis , Seasons , Heating , Beijing , Environmental Monitoring , Particulate Matter/analysis , Risk Assessment , China
2.
Int J Mol Sci ; 23(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35682547

ABSTRACT

Chlorophenols (CPs) and phenol are abundant in thermal and combustion procedures, such as stack gas production, industrial incinerators, metal reclamation, etc., which are key precursors for the formation of polychlorinated naphthalenes (PCNs). CPs and phenol can react with H or OH radicals to form chlorophenoxy radicals (CPRs) and phenoxy radical (PhR). The self-condensation of CPRs or cross-condensation of PhR with CPRs is the initial and most important step for PCN formation. In this work, detailed thermodynamic and kinetic calculations were carried out to investigate the PCN formation mechanisms from PhR with 2-CPR/3-CPR. Several energetically advantageous formation pathways were obtained. The rate constants of key elementary steps were calculated over 600~1200 K using the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution method. The mechanisms were compared with the experimental observations and our previous works on the PCN formation from the self-condensation of 2-CPRs/3-CPRs. This study shows that naphthalene and 1-monochlorinated naphthalene (1-MCN) are the main PCN products from the cross-condensation of PhR with 2-CPR, and naphthalene and 2-monochlorinated naphthalene (2-MCN) are the main PCN products from the cross-condensation of PhR with 3-CPR. Pathways terminated with Cl elimination are preferred over those terminated with H elimination. PCN formation from the cross-condensation of PhR with 3-CPR can occur much easier than that from the cross-condensation of PhR with 2-CPR. This study, along with the study of PCN formation from the self-condensation 2-CPRs/3-CPRs, can provide reasonable explanations for the experimental observations that the formation potential of naphthalene is larger than that of 1-MCN using 2-CP as a precursor, and an almost equal yield of 1-MCN and 2-MCN can be produced with 3-CP as a precursor.


Subject(s)
Chlorophenols , Naphthalenes , Phenols
3.
J Hazard Mater ; 436: 129143, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35594669

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NPAHs) attract continuous attention due to their distinct carcinogenicity and mutagenicity. To investigate the characteristics, sources, formation mechanism and health risk assessment of PAHs and NPAHs, PM2.5 were collected at an urban site in Beijing from 2017 to 2018. The highest PAHs and NPAHs concentrations were 77.92 ± 54.62 ng/m3 and 963.71 ± 695.06 pg/m3 in the winter campaign, which were several times larger than those in other seasonal campaigns. Distinct diurnal variations of nocturnal levels higher than daytime levels were shown for PAHs and NPAHs. Source analysis indicated that besides vehicle exhaust, biomass burning and coal combustion were important sources of PAHs and NPAHs in the fall and winter campaigns. Secondary formation in atmosphere was another source of NPAHs especially in the spring and summer campaigns. NO2 and RH could positively influence the heterogeneous formation of NPAHs when RH was less than 60%. Quantum calculation results confirmed the formation pathway of 2N-FLA from the OH/NO3-initiated oxidation of FLA. The results of health risk assessment showed the potential health risks for the residents, especially in the winter campaign. These results indicated that PAHs and NPAHs still deserve attention following with the decrease concentrations of particulate matter.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Beijing , China , Environmental Monitoring/methods , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Risk Assessment , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...