Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1288669, 2023.
Article in English | MEDLINE | ID: mdl-38028794

ABSTRACT

Nitric oxide (NO), a free radical labile gas, is involved in the regulation of various biological functions and physiological processes during animal reproduction. Recently, increasing evidence suggests that the biological role and chemical fate of NO is dependent on dynamic regulation of its biosynthetic enzyme, three distinct nitric oxide synthase (NOS) according to their structure, location and function. The impact of NOS isoforms on reproductive functions need to be timely elucidated. Here, we focus on and the basic background and latest studies on the development, structure, importance inhibitor, location pattern, complex functions. Moreover, we summarize the exactly mechanisms which involved some cell signal pathways in the regulation of NOS with cellular and molecular level in the animal reproduction. Therefore, this growing research area provides the new insight into the important role of NOS male and female reproduction system. It also provides the treatment evidence on targeting NOS of reproductive regulation and diseases.

2.
Article in English | MEDLINE | ID: mdl-36515889

ABSTRACT

The gut microbiota plays an important role in intestinal immune system development and in driving inflammation. Antibiotic administration for therapeutic purposes causes an imbalance in the gut microbiota. Antimicrobial peptides can regulate the gut microbiota and maintain intestinal homeostasis. The aim of this study was to investigate the anti-inflammatory effects and regulation of the gut microbiota by the orally administered antimicrobial peptide mastoparan X (MPX). In this study, Escherichia coli was used to induce intestinal inflammation, and the results showed that MPX+ E. coli alleviated weight loss and intestinal pathological changes in necropsy specimens of E. coli-infected mice. MPX+ E. coli reduced the serum levels of the inflammation-related proteins interleukin-2, interleukin-6, tumour necrosis factor-α, myeloperoxidase, and lactate dehydrogenase on days 7 and 28. Furthermore, MPX+ E. coli increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum and colon post infection. Scanning electron microscopy and transmission electron microscopy results showed that MPX could improve the morphology of jejunum villi and microvilli and increase tight junction protein levels. 16S rRNA sequencing analysis of caecal content samples showed that the species diversity and richness were lower in the E. coli-infected group. At the genus level, MPX+ E. coli significantly reduced the abundance of Bacteroidales and Alistipes and enhanced the relative abundance of Muribaculaceae. Alpha-diversity analyses (Shannon index) showed that MPX significantly increased the microbial diversity of mice. Overall, this study is the first to investigate the effects of oral administration of MPX on intestinal inflammation and the gut microbiota, providing a new perspective regarding the prevention of enteritis and maintenance of intestinal homeostasis.

3.
Theriogenology ; 189: 301-312, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35842953

ABSTRACT

Orchitis accounts for a high proportion of male animal reproductive disorders. Hence, it is urgent to identify drugs for the prevention and treatment of orchitis. Antimicrobial peptides (AMPs) are currently recognized as one of the most promising alternatives to antibiotics. However, the protective effects of AMPs on lipopolysaccharide (LPS)-induced orchitis have not been reported. In this study, we developed an LPS-induced orchitis model in which primary bovine Sertoli cells were used as model cells. MPX was indicated to effectively reduce the inflammatory response of Sertoli cells. MPX attenuated the gene expression of the proinflammatory cytokines TNF-α, IL-6 and IL-1ß by suppressing the MAPK pathway, especially the phosphorylation of p38 and ERK. MPX also decreased the oxidative stress response caused by LPS and upregulated Occludin and Claudin-1 expression, thereby maintaining the integrity of the blood-testis barrier. Moreover, we found that MPX inhibited apoptosis in Sertoli cells. In a mouse model, we found that MPX significantly inhibited the disruptive effects of LPS, reducing seminiferous epithelium damage, vacuolations, hyperplasia, and apoptosis in spermatogenic cells and rescuing spermatogenesis. In addition, the expression of inflammatory factors such as IL-1ß, IL-18, IL-6 and TNF-α was decreased after MPX treatment in the mouse testes. MPX had no effect on other organs in mice, indicating its safety. This study was undertaken to investigate how MPX regulates the inflammatory response in Sertoli cells and provide a reference for the clinical prevention and treatment of male animal orchitis.


Subject(s)
Cattle Diseases , Orchitis , Rodent Diseases , Animals , Antimicrobial Peptides , Blood-Testis Barrier/metabolism , Cattle , Cattle Diseases/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Orchitis/drug therapy , Orchitis/metabolism , Orchitis/veterinary , Rodent Diseases/metabolism , Sertoli Cells/metabolism , Testis , Tumor Necrosis Factor-alpha/metabolism
4.
Expert Rev Mol Diagn ; 20(5): 477-488, 2020 05.
Article in English | MEDLINE | ID: mdl-32212972

ABSTRACT

Introduction: Cancer causes thousands of deaths worldwide each year. Therefore, monitoring of health status and the early diagnosis of cancer using noninvasive assays, such as the analysis of molecular biomarkers in urine, is essential. However, effective biomarkers for early diagnosis of cancer have not been established in many types of cancer.Areas covered: In this review, we discuss recent findings with regard to the use of urine composition as a biomarker in eleven types of cancer. We also highlight the use of urine biomarkers for improving early diagnosis.Expert opinion: Urinary biomarkers have been applied for clinical application of early diagnosis. The main limitation is a lack of integrated approaches for identification of new biomarkers in most cancer. The utilization of urinary biomarker detection will be promoted by improved detection methods and new data from different types of cancers. With the development of precision medicine, urinary biomarkers will play an increasingly important clinical role. Future early diagnosis would benefit from changes in the utilization of urinary biomarkers.


Subject(s)
Biomarkers, Tumor/urine , Neoplasms/diagnosis , Neoplasms/urine , Early Detection of Cancer/methods , Early Detection of Cancer/standards , Humans , Liquid Biopsy/methods , Liquid Biopsy/standards , Precision Medicine/methods , Precision Medicine/standards , Prognosis , Urinalysis/methods , Urinalysis/standards
5.
Anim Biotechnol ; 31(5): 440-446, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31104559

ABSTRACT

Copy number variations (CNVs) have been identified as another important structural variation of genome. In recent years, a large amount of CNVRs have been identified in humans and animals. However, association and dosage effects studies of CNVs are very limited. Apolipoprotein L3 (APOL3) gene plays a central role in modulating gene transcription and is located within a CNVR that encompasses quantitative trait locis (QTLs) for economic traits like meat quality. Herein, we analyzed the CNV polymorphism of APOL3 in 421 individuals from five distinct cattle breeds, and then correlated their genotypes with growth traits. Association analysis revealed that the APOL3 CNV was significantly associated with hip height and cannon circumference of Xianan (XN) cattle (P < .01), and visibly associated with body slanting length and hucklebone width of Pinan (PN) cattle (P < .05). Overall, the data provide evidence for the functional role of APOL3 CNV and a basis for future applications in cattle breeding.


Subject(s)
Apolipoproteins L/genetics , Body Size/genetics , Cattle/genetics , DNA Copy Number Variations/genetics , Animals , Breeding , Cattle/growth & development , Quantitative Trait Loci
6.
Anim Biotechnol ; 30(1): 7-12, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29527980

ABSTRACT

The α-adducin (ADD1) is a subunit of adducin which is a cytoskeleton heterodimeric protein. Adducin participates in oocytes chromosome meiosis of mice, prompting adducin has an effect on embryonic development. Adducin gene mutation has significantly functional change. So the present study was to identify and characterize polymorphisms within the coding region of the bovine ADD1 gene among different cattle breeds. Here, 11 novel single nucleotide polymorphisms (SNPs 1-11) were identified by DNA sequencing and polymerase chain reaction-single stranded conformational polymorphism, there were one synonymous mutation in exon 1 (SNP1); four missense mutations in exons 4, 7, and 8 (SNPs 3-6); and six mutations in introns 4, 12, 13, and 14 (SNPs 2, 7-10). The statistical analyses indicated that the some SNPs are associated with the growth traits (body length, body height, chest circumference, and hucklebone width) in Chinese Jiaxian cattle population. Our results provide evidence that polymorphisms in the ADD1 gene are associated with growth traits, and may be used for marker-assisted selection in beef cattle breeding program.


Subject(s)
Calmodulin-Binding Proteins/genetics , Cattle/genetics , Genetic Variation , Animals , Body Size/genetics , Cattle/growth & development , Exons/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
7.
Funct Integr Genomics ; 18(5): 559-567, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29737453

ABSTRACT

Copy number variation (CNV) of DNA sequences, functionally significant but yet fully ascertained, is believed to confer considerable increments in unexplained heritability of quantitative traits. Identification of phenotype-associated CNVs (paCNVs) therefore is a pressing need in CNV studies to speed up their exploitation in cattle breeding programs. Here, we provided a new avenue to achieve this goal that is to project the published CNV data onto meta-quantitative trait loci (meta-QTL) map which connects causal genes with phenotypes. Any CNVs overlapping meta-QTL therefore will be potential paCNVs. This study reported potential paCNVs in Bos taurus autosome 3 (BTA3). Notably, overview indexes and CNVs both highlighted a narrower region (BTA3 54,500,000-55,000,000 bp, named BTA3_INQTL_6) within one constructed meta-QTL. Then, we ascertained guanylate-binding protein 4 (GBP4) among the nine positional candidate genes was significantly associated with adult cattle stature, including body weight (BW, P < 0.05) and withers height (WHT, P < 0.05), fitting GBP4 CNV either with three levels or with six levels in the model. Although higher copy number downregulated the mRNA levels of GBP2 (P < 0.05) and GBP4 (P < 0.05) in 1-Mb window (54.0-55.0 Mb) in muscle and adipose, additional analyses will be needed to clarify the causality behind the ascertained association.


Subject(s)
DNA Copy Number Variations , GTP-Binding Proteins/genetics , Genome , Quantitative Trait Loci , Animals , Body Weight , Breeding , Cattle , Chromosome Mapping , GTP-Binding Proteins/metabolism , Genotype , Phenotype , Quantitative Trait, Heritable
8.
J Cell Physiol ; 233(12): 9365-9374, 2018 12.
Article in English | MEDLINE | ID: mdl-29350420

ABSTRACT

Differentiated embryo chondrocyte 1 (DEC1), a member of basic-helix-loop-helix transcription factor Bhlhe40, also called stimulated by retinoic acid 13, STRA13, plays an important role in the regulation of adipogenesis, tumorigenesis, peripheral circadian output, response to hypoxia, and development of metabolic syndrome. Previous studies suggested that DEC1 was involved in skeletal muscle development; however, its precise role in myoblast differentiation has not been determined. In the present study, we showed that DEC1 expressed ubiquitously in different bovine tissues and was down-regulated in differentiated bovine satellite cells. Expression of muscle specific transcription factors (Myf5, MyoD, MyoG, and MHC) was significantly down-regulated when DEC1 was over-expressed by both CoCl2 -simulated hypoxia and Adenovirus-mediated transduction in bovine satellite cells. Consistent with that, promoter analyses via luciferase reporter assay also revealed that overexpression of bovine DEC1 could inhibit MyoG promoter activity. In conclusion, overexpression of DEC1 blocked myogenesis by inhibiting MyoG promoter activity in bovine. Our results provided a new mechanism for the muscle growth, which would contribute to increase cattle meat productivity.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Muscle Development , Myogenin/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cattle , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cobalt/pharmacology , Down-Regulation/drug effects , Down-Regulation/genetics , Muscle Development/drug effects , Muscle Development/genetics , Myogenin/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Satellite Cells, Skeletal Muscle/drug effects
9.
Anim Biotechnol ; 28(2): 104-111, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-27532432

ABSTRACT

DNA methylation is essential for the regulation of gene expression and important roles in muscle development. To assess the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in ZBED6, we simultaneously examined DNA methylation and expression in six tissues from two different developmental stages (fetal bovine and adult bovine). The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The result of quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution and is highly expressed in adult bovine (P < 0.05 or P < 0.01). The DNA methylation level was significantly different in liver, lung and spleen between the two cattle groups (P < 0.05 or P < 0.01). The adult bovine group exhibited a significantly higher mRNA level and lower DNA methylation level than the fetal bovine group in liver, lung, and spleen. No significant association was detected between DNA methylation level and muscle, heart, and kidney at two different stages. In this study, the statistical analyses indicated that DNA methylation patterns are associated with mRNA level in some tissues, these results may be a useful parameter to investigate muscle developmental in cattle and as a model for studies in other species, potentially contributing to an improvement of growth performance selection in beef cattle breeding program.


Subject(s)
Aging/genetics , Cattle/embryology , Cattle/physiology , CpG Islands/genetics , DNA Methylation , RNA, Messenger/genetics , Repressor Proteins/genetics , Aging/metabolism , Animals , Gene Expression Regulation, Developmental/physiology , Organ Specificity/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , Statistics as Topic , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...