Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(32): 11317-11328, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37526360

ABSTRACT

The phase instability of CsPbI3 perovskite quantum dots (PQDs) restricts their practical applications due to the easy conversion from the luminescent cubic phase to the non-luminescent orthorhombic phase. The elemental doping route has been regarded as one of the most effective strategies to achieve high-quality PQDs-based phosphors. Herein, a stoichiometric amount of nickel chloride (NiCl2) has been effectively doped into the CsPbI3 lattice. The incorporation of Ni2+ ions has little effect on the crystal phase, structure, and morphology of the CsPbI3 PQDs but greatly influences their luminescence properties. The Ni2+ doping not only improves the luminescence performance but also greatly enhances the stability against temperature, storage time, and polar solvent. The formation process and luminescence and stability improvement mechanisms have been discussed. Moreover, the influence of a series of other metal chlorides (KCl, NaCl, MgCl2, ZnCl2, SnCl2, and CaCl2) on the luminescence performance of CsPbI3 PQDs has been systematically investigated, revealing that the luminescence intensity increases by introducing CaCl2, SnCl2, or ZnCl2 but decreases after doping MgCl2, NaCl, or KCl into the CsPbI3 lattice. The as-proposed doping strategy may have a significant impact on tackling the intrinsic instability of all-inorganic CsPbX3 PQDs, shedding light on their future applications in light-emitting diode (LED) devices and solid-state lighting.

2.
Sci Total Environ ; 805: 150388, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34818765

ABSTRACT

The effects of N deposition on the C and N cycles via altered litter decomposition rates are an important aspect of global environmental change. The Changbai Mountain region experienced a high N deposition (2.7 g·m-2·year-1 in 2015) and corresponding expansion of Deyeuxia purpurea into the alpine tundra, resulting in changes in endogenous nutrients. However, the relative contributions of the N deposition and endogenous litter nutrients to litter decompositions remain unclear. Therefore, a 5-year N addition and 2-year litter decomposition experiments were conducted. Exogenous N reduced the remaining litter mass of Rhododendron aureum at the early stage (30-240 d) by promoting soluble sugar release, and increased it at the late stage (360-720 d) by suppressing lignin release and decreasing soil microbial community and enzyme activity. A higher proportion of D. purpurea litter (representing higher N, lower lignin, and C:N ratio) decreased remaining litter mass and increased net N release. Exogenous N decreased decomposition rate from 0.32 to 0.21 and net N release from 34% to 24%, whereas litter compositions increased decomposition rates from 0.32 to 0.69 and net litter N release from 34% to 69%. Endogenous litter nutrients directly explained 62% and 40% of the litter decomposition and net N release variables, respectively, whereas exogenous N indirectly explained 12% and 9%, respectively. Thus, we infer that the reductions in C and N storage following D. purpurea expansion may offset the increases of C and N storage under N deposition and the expansion of D. purpurea has a potential long-term negative impact on the ability of tundra plants to sequester C and N in the alpine tundra of the Changbai Mountains. These findings highlight how shifting plant expansion, through changes endogenous nutrients, can influence tundra litter decomposition and C and N storage responses to N deposition.


Subject(s)
Ecosystem , Nitrogen , Nitrogen/analysis , Nutrients , Plant Leaves/chemistry , Soil , Tundra
3.
Plants (Basel) ; 8(10)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557891

ABSTRACT

Significant replacement of shrub species by herbaceous species has been observed in the Changbai alpine tundra zone, China, since the 1990s. This study used plot surveys to analyze variations in the spatial distribution of dominant plants and to ascertain the changing mechanisms of dominant species in the alpine tundra zone. We found that the two previously dominant shrubs, Rhododendron chrysanthum and Vaccinium uliginosum, differed markedly in their distribution characteristics. The former had the highest abundance and the lowest coefficient of variation, skewness, and kurtosis, and the latter showed the opposite results, while the six herb species invaded had intermediate values. R. chrysanthum still had a relatively uniform distribution, while the herbaceous species and V. uliginosum had a patch distribution deviating from the normal distribution in the tundra zone. Micro-topography and slope grade had stronger effects on the spatial distribution of the eight plant species than elevation. Herbs tended to easily replace the shrubs on a semi-sunny slope aspect, steep slope, and depression. Overall, the dominance of dwarf shrubs declined, while the herbaceous species have encroached and expanded on the alpine tundra zone and have become co-dominant plant species. Our results suggest that various micro-topographic factors associated with variations in climatic and edaphic conditions determine the spatial distribution of plants in the alpine tundra zone. Future climate warming may cause decreased snow thickness, increased growing season length, and drought stress, which may further promote replacement of the shrubs by herbs, which shows retrogressive vegetation successions in the Changbai alpine tundra zone. Further studies need to focus on the physio-ecological mechanisms underlying the vegetation change and species replacement in the alpine tundra area under global climate change.

SELECTION OF CITATIONS
SEARCH DETAIL
...