Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Public Health ; 12: 1371920, 2024.
Article in English | MEDLINE | ID: mdl-38694994

ABSTRACT

Background: An increasing number of studies suggest that environmental pollution may increase the risk of vitamin D deficiency (VDD). However, less is known about arsenic (As) exposure and VDD, particularly in Chinese pregnant women. Objectives: This study examines the correlations of different urinary As species with serum 25 (OH) D and VDD prevalence. Methods: We measured urinary arsenite (As3+), arsenate (As5+), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) levels and serum 25(OH)D2, 25(OH)D3, 25(OH) D levels in 391 pregnant women in Tianjin, China. The diagnosis of VDD was based on 25(OH) D serum levels. Linear relationship, Logistic regression, and Bayesian kernel machine regression (BKMR) were used to examine the associations between urinary As species and VDD. Results: Of the 391 pregnant women, 60 received a diagnosis of VDD. Baseline information showed significant differences in As3+, DMA, and tAs distribution between pregnant women with and without VDD. Logistic regression showed that As3+ was significantly and positively correlated with VDD (OR: 4.65, 95% CI: 1.79, 13.32). Meanwhile, there was a marginally significant positive correlation between tAs and VDD (OR: 4.27, 95% CI: 1.01, 19.59). BKMR revealed positive correlations between As3+, MMA and VDD. However, negative correlations were found between As5+, DMA and VDD. Conclusion: According to our study, there were positive correlations between iAs, especially As3+, MMA and VDD, but negative correlations between other As species and VDD. Further studies are needed to determine the mechanisms that exist between different As species and VDD.


Subject(s)
Arsenic , Vitamin D Deficiency , Humans , Female , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/urine , Pregnancy , Cross-Sectional Studies , China/epidemiology , Adult , Arsenic/urine , Arsenic/blood , Prevalence , Arsenicals/urine , Vitamin D/blood , Vitamin D/urine , Pregnancy Complications/urine , Pregnancy Complications/epidemiology , Logistic Models , East Asian People
2.
ACS Appl Mater Interfaces ; 16(20): 26121-26129, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728577

ABSTRACT

The design of aqueous zinc-ion batteries (ZIBs) that have high specific capacity and long-term stability is essential for future large-scale energy storage systems. Cathode materials with extended π-conjugation and abundant active sites are desirable to enhance the charge storage performance and the cycling stability of the aqueous ZIB. Based on this concept, 6,9-dihydropyrazino[2,3-g]quinoxaline-2,3,7,8(1H,4H)-tetrone was chosen as the monomer to be electropolymerized onto carbon cloth (PDHPQ-Tetrone/CC). When used as the cathode material for aqueous ZIBs, an exceptional cycling life (>20,000 cycles) at a current density of 10 A g-1 was achieved, with the specific capacity maintained at 82.8% and with the Coulombic efficiency at around 100% throughout cycling. At the charge-discharge current density of 0.1 A g-1, the ZIB with PDHPQ-Tetrone/CC achieved a high specific capacity of 248 mAh g-1. Kinetic analyses showed that both surface-capacitive-controlled processes and semi-infinite diffusion-controlled processes contribute to the stored charge. The charge storage mechanism was investigated with ex situ characterizations and involves the redox processes of carbonyl/hydroxyl and amino/imino groups coupled with insertion and extraction of both Zn2+ and H+.

3.
Talanta ; 274: 126033, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38581855

ABSTRACT

Covalent organic polymers (COPs) have garnered considerable attention as promising adsorbents of online solid phase extraction (online SPE). Morphology modulation provides an appealing solution to enhance adsorption efficiency and reduce back-pressure in the absorbent. However, the synthesis of COPs with regular geometric shapes and specific adsorption selectivity remains challenging. In this study, a uniform spherical fluorinated COP (F-sCOP, average diameter: 2.14 µm) was successfully synthesized by Schiff base reaction of 1,3,5-triformylphoroglucinol (TP) and 2,2'-bis(trifluoromethyl)benzidine (TFMB). The F-sCOP had a large surface area (BET: 346.2 m2 g-1), remarkable enrichment capacity (enrichment factors: 186-782), high selectivity toward fipronil and its metabolites (adsorption efficiency >93.1%), and admirable service life (>60 times). Based on the adsorbent, a novel µ-matrix cartridge extraction-online-µ-solid phase extraction-high performance liquid chromatography-mass spectrometry (µ-MCE-online-µ-SPE-HPLC-MS) method was constructed and used to track trace fipronil and its metabolites in soil. The proposed method exhibited a wide linear range (0.05-1000 ng g-1), low quantitation limits (LOQs: 0.0027-0.011 ng g-1), high recoveries (90.1-119.6%) and good repeatability (RSD ≤10.5%, n = 3) for fipronil analysis. This study paves the way for pesticide analysis in soil risk assessment.

4.
Sci Rep ; 14(1): 4525, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402265

ABSTRACT

Lip-to-Speech (LTS) generation is an emerging technology that is highly visible, widely supported, and rapidly evolving. LTS has a wide range of promising applications, including assisting speech impairment and improving speech interaction in virtual assistants and robots. However, the technique faces the following challenges: (1) Chinese lip-to-speech generation is poorly recognized. (2) The wide range of variation in lip-speaking is poorly aligned with lip movements. Addressing these challenges will contribute to advancing Lip-to-Speech (LTS) technology, enhancing the communication abilities, and improving the quality of life for individuals with disabilities. Currently, lip-to-speech generation techniques usually employ the GAN architecture but suffer from the following problems: The primary issue lies in the insufficient joint modeling of local and global lip movements, resulting in visual ambiguities and inadequate image representations. To solve these problems, we design Flash Attention GAN (FA-GAN) with the following features: (1) Vision and audio are separately coded, and lip motion is jointly modelled to improve speech recognition accuracy. (2) A multilevel Swin-transformer is introduced to improve image representation. (3) A hierarchical iterative generator is introduced to improve speech generation. (4) A flash attention mechanism is introduced to improve computational efficiency. Many experiments have indicated that FA-GAN can recognize Chinese and English datasets better than existing architectures, especially the recognition error rate of Chinese, which is only 43.19%, the lowest among the same type.


Subject(s)
Speech Perception , Speech , Humans , Lip , Quality of Life
5.
Langmuir ; 39(45): 16163-16173, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37922413

ABSTRACT

This study prepared an active 2-D covalent organic skeleton (HDU-27) with a network structure, high crystallinity, considerable specific surface area, excellent pore structure, and excellent stability. Kinetic studies manifested that HDU-27 could effectively capture uranium as monolayer chemisorption within a very short kinetic equilibrium time (10 min). In particular, the temperature significantly and positively impacted the uranium adsorption performance of HDU-27. At 298, 313, and 328 K, the adsorption capacity reached 269.2, 488.8, and 576.2 mg g-1, respectively, suggesting the potential to treat high-temperature industrial wastewater containing uranium. HDU-27 had high stability and recoverability with an adsorption efficiency of 98.5% after five adsorption-desorption cycles. According to X-ray photoelectron spectroscopy, the mechanism of interaction between U(VI) and HDU-27 was mainly the chelation of UO22+ by the N atom in the thiazole structure and the strong coordination of the O atom in the keto structure with UO22+. More excitingly, HDU-27 could chemically reduce soluble U(VI) to insoluble U(IV) and release binding sites for the adsorption of additional U(VI). In conclusion, HDU-27 has outstanding potential for uranium adsorption from industrial wastewater containing uranium.

6.
Front Public Health ; 11: 1271328, 2023.
Article in English | MEDLINE | ID: mdl-38026312

ABSTRACT

Introduction: The role of quantitative target setting has become an important topic in debates on the improvement of road safety performance. Specifically, there are questions regarding the relationship between quantitative safety targets and their actual effects. Although previous studies have provided important insights into this subject, their empirical findings have largely been equivocal, and research on this topic remains inadequate. Methods: Based on panel data representing 20 years of observations from 34 OECD member states, we employed nonlinear and linear panel models to investigate whether and how the attributes of quantitative road safety targets (i.e., target ambition and duration) influence their success (i.e., target completion status and rate). Results: The results indicate that a quantitative target with a higher level of ambition is associated with a lower likelihood and rate of completion, whereas there is no support for a connection between target duration and final completion rate. This suggests that an excessively ambitious target does not necessarily result in better road safety performance and is detrimental to achieving expected fatality reductions. Conclusion: From an empirical perspective, this study revealed a potential interaction effect between quantitative road safety targets and practical fatality reduction performance, providing government officials and policymakers with essential references for future practices on target setting and governance planning in regard to public health.


Subject(s)
Accidents, Traffic , Accidents, Traffic/prevention & control , Safety , Probability
7.
Mol Plant ; 16(12): 1976-1989, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37837193

ABSTRACT

Brassinosteroid (BR) is a vital plant hormone that regulates plant growth and development. BRASSINAZOLE RESISTANT 1 (BZR1) is a key transcription factor in BR signaling, and its nucleocytoplasmic localization is crucial for BR signaling. However, the mechanisms that regulate BZR1 nucleocytoplasmic distribution and thus the homeostasis of BR signaling remain largely unclear. The vacuole is the largest organelle in mature plant cells and plays a key role in maintenance of cellular pH, storage of intracellular substances, and transport of ions. In this study, we uncovered a novel mechanism of BR signaling homeostasis regulated by the vacuolar H+-ATPase (V-ATPase) and BZR1 feedback loop. Our results revealed that the vha-a2 vha-a3 mutant (vha2, lacking V-ATPase activity) exhibits enhanced BR signaling with increased total amount of BZR1, nuclear-localized BZR1, and the ratio of BZR1/phosphorylated BZR1 in the nucleus. Further biochemical assays revealed that VHA-a2 and VHA-a3 of V-ATPase interact with the BZR1 protein through a domain that is conserved across multiple species. VHA-a2 and VHA-a3 negatively regulate BR signaling by interacting with BZR1 and promoting its retention in the tonoplast. Interestingly, a series of molecular analyses demonstrated that nuclear-localized BZR1 could bind directly to specific motifs in the promoters of VHA-a2 and VHA-a3 to promote their expression. Taken together, these results suggest that V-ATPase and BZR1 may form a feedback regulatory loop to maintain the homeostasis of BR signaling in Arabidopsis, providing new insights into vacuole-mediated regulation of hormone signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Vacuolar Proton-Translocating ATPases , Arabidopsis/metabolism , Brassinosteroids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Feedback , Homeostasis , Gene Expression Regulation, Plant , DNA-Binding Proteins/metabolism
8.
Anal Methods ; 15(41): 5510-5517, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37843441

ABSTRACT

Recent years have witnessed ever-increasing achievements using Ti3C2 MXene quantum dots (Ti3C2 MQDs) and their vital contributions to fluorescent biosensing. However, the applicability and flexibility of most Ti3C2 MQD-based sensors are limited by their emission of a single blue wavelength. To address this issue, we present a facile strategy to utilize carbon dots as a model to construct a ratiometric fluorescent sensor based on fluorescence resonance energy transfer to quantitatively monitor crystal violet. The fabricated probe exhibited dual emission at 440 and 565 nm, respectively; when introducing crystal violet, the peak at 565 nm was quenched but that at 440 nm remained constant. Further aiming for portable, convenient, and on-site analysis, an innovative smartphone-assisted platform provides promising prospects for future in situ quantitation. This work creates a general strategy for constructing Ti3C2 MQD-based composite fluorescent systems, as well as suggesting great application potential in food security monitoring.

9.
J Hazard Mater ; 460: 132376, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37690202

ABSTRACT

Currently, metal-organic frameworks (MOFs) derived materials have been widely concerned for the reduction of 4-nitrophenol (4-NP). However, complex recovery of powder catalysts and low utilization ratio of active sites make their application challenging. Herein, a novel Cu2O/Cu/PDA/CF catalyst has been developed for the rapid reduction of 4-NP to 4-aminophenol (4-AP). The catalyst was constructed by compositing a two-dimensional nanoflower MOF-derived nanoporous Cu2O/Cu network on a polydopamine (PDA)-modified porous copper foam by a mild and controllable in-situ reduction synthesis. Notably, an enhanced catalytic performance of Cu2O/Cu/PDA/CF was obtained for 4-NP reduction with a rate constant (k) of 0.8001 min-1, outperforming Cu/PDA/CF-X (X = 400, 500 and 600 â„ƒ pyrolysis temperature) catalysts (2.3-6.4 folds), and even many reported catalysts (2.3-46.5 folds). The ultrafast degradation of 4-NP was completed in 70 s. Moreover, an ingenious online continuous flow catalytic reactor (CFCR)-high performance liquid chromatography (HPLC) system was constructed for automatic and real-time monitoring of the reduction reaction. System stability experiments over 300 min revealed a surprisingly high reaction k value of 76.68 min-1 at low NaBH4 usage, significant increasing by 2-3 orders of magnitude compared with Cu2O/Cu/PDA/CF batch catalysis, due to the high aspect ratio of 2D nanoflower MOF and convection-accelerated mass transfer. This work offers new insights for the rational design of catalytic reactor and its potential application in wastewater treatment.

10.
Anal Chem ; 95(29): 10887-10894, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37433191

ABSTRACT

Liquid-crystal monomers (LCMs), especially fluorinated biphenyls and analogues (FBAs), are identified to be an emerging generation of persistent organic pollutants. However, there is a dearth of information about their occurrence and distribution in environmental water and lacustrine soil samples. Herein, a series of fluorine-functionalized Scholl-coupled microporous polymers (FSMP-X, X = 1-3) were designed and synthesized for the highly efficient and selective enrichment of FABs. Their hydrophobicity, porosity, chemical stability, and adsorption performance (capacity, rate, and selectivity) were regulated preciously. The best-performing material (FSMP-2) was employed as the on-line fluorous solid-phase extraction (on-line FSPE) adsorbent owing to its high adsorption capacity (313.68 mg g-1), fast adsorption rate (1.05 g h-1), and specific selectivity for FBAs. Notably, an enrichment factor of up to 590.2 was obtained for FSMP-2, outperforming commercial C18 (12.6-fold). Also, the underlying adsorption mechanism was uncovered by density functional theory calculations and experiments. Based on this, a novel and automated on-line FSPE-high-performance liquid chromatography method was developed for ultrasensitive (detection limits: 0.0004-0.0150 ng mL-1) and low matrix effect (73.79-113.3%) determination of LCMs in lake water and lacustrine soils. This study offers new insight into the highly selective quantification of LCMs and the first evidence for their occurrence and distribution in these environmental samples.

11.
Nano Lett ; 23(11): 5358-5366, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37265420

ABSTRACT

Accelerating the migration of interfacial carriers in a heterojunction is of paramount importance for driving high-performance photoelectric responses. However, the inferior contact area and large resistance at the interface limit the eventual photoelectric performance. Herein, we fabricated an S-scheme heterojunction involving a 2D/2D dual-metalloporphyrin metal-organic framework with metal-center-regulated CuTCPP(Cu)/CuTCPP(Fe) through electrostatic self-assembly. The ultrathin nanosheet-like architectures reduce the carrier migration distance, while the similar porphyrin backbones promote reasonable interface matching through π-π conjugation, thereby inhibiting the recombination of photogenerated carriers. Furthermore, the metal-center-regulated S-scheme band alignments create a giant built-in electric field, which provides a huge driving force for efficient carrier separation and migration. Coupling with the biomimetic catalytic activity of CuTCPP(Fe), the resultant heterojunction was utilized to construct photoelectrochemical uric acid biosensors. This work provides a general strategy to enhance photoelectric responses by engineering the interfacial structure of heterojunctions.

12.
J Ethnopharmacol ; 315: 116616, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37182677

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Anethum graveolens L. (dill), which has been used as a medicine, spice and aromatic plant since ancient times, is not only a traditional Chinese medicines but also an important medicinal and functional food in Europe and Central and South Asia. In ethnomedicine, dill reportedly exerts a protective effect on the liver and has been widely used as a traditional medicine for the treatment of jaundice in the liver and spleen and inflammatory gout diseases in Saudi Arabia. Furthermore, studies have found that dill can regulate the NAT2 enzyme, and this plant was thus selected to study its alleviating effect on isoniazid liver injury. AIM OF THE STUDY: The purpose of this study was to explore the effect of dill on alleviating liver injury induced by hydrazine compounds represented by isoniazid through the use of network pharmacology combined with in vivo and in vitro experimental verifications. MATERIALS AND METHODS: First, we screened the key targets of dill in the treatment of liver injury through the use of network pharmacology; we then performed GO and KEGG pathway enrichment analyses using the DAVID database. We also verified the alleviative and anti-inflammatory effects of dill on isoniazid liver injury in rats by animal experiments. We further investigated the modulating effect of dill on the enzymatic activity of NAT2, a common metabolizing enzyme of hydrazine compounds. RESULTS: A total of 111 key targets were screened through network pharmacology. In vivo experiments showed that dill reduced the amount of inflammatory factors produced by isoniazid, such as IL-10, IL-1ß, TNF-α and IL-6, restored the levels of ALT, AST, r-GT, AKP and TBA in vivo, and attenuated isoniazid liver injury. Both in vivo and vitro results indicated that dill could regulate the expression of NAT2 enzymes. CONCLUSIONS: The results tentatively demonstrate that dill can alleviate isoniazid liver injury through multiple components, targets and pathways and exerts a regulatory effect on the NAT2 enzyme, and these findings thus provide new ideas for subsequent studies on hydrazide liver injury--reducing the risk of hydrazide-induced liver injury through anti-inflammation and regulation of NAT2 enzymes.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Drugs, Chinese Herbal , Rats , Animals , Isoniazid/toxicity , Medicine, Chinese Traditional , Saudi Arabia , Drugs, Chinese Herbal/pharmacology
13.
Waste Manag Res ; 41(10): 1549-1558, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37070218

ABSTRACT

Technology for recycling retired lithium batteries has become increasingly environment-friendly and efficient. In traditional recovery methods, pyrometallurgy or hydrometallurgy is often used as an auxiliary treatment method, which results in secondary pollution and increases the cost of harmless treatment. In this article, a new method for combined mechanical recycling of waste lithium iron phosphate (LFP) batteries is proposed to realize the classification and recycling of materials. Appearance inspections and performance tests were conducted on 1000 retired LFP batteries. After discharging and disassembling the defective batteries, the physical structure of the cathode binder was destroyed under ball-milling cycle stress, and the electrode material and metal foil were separated using ultrasonic cleaning technology. After treating the anode sheet with 100 W of ultrasonic power for 2 minutes, the anode material was completely stripped from the copper foil, and no cross-contamination between the copper foil and graphite was observed. After the cathode plate was ball-milled for 60 seconds with an abrasive particle size of 20 mm and then ultrasonically treated for 20 minutes with a power of 300 W, the stripping rate of the cathode material reached 99.0%, and the purities of the aluminium foil and LFP reached 100% and 98.1%, respectively.


Subject(s)
Copper , Lithium , Electric Power Supplies , Recycling/methods , Electrodes , Iron , Phosphates
14.
Int Wound J ; 20(5): 1402-1417, 2023 May.
Article in English | MEDLINE | ID: mdl-36307094

ABSTRACT

Dry skin and pressure injuries in older persons have become global health care problems. This was a multicentre, prospective cross-sectional study in 44 hospitals and 8 long term care institutions from 20 provinces, autonomous regions and municipalities in China and aimed to explore the relationship between the two skin problems in older patients. We mainly found 11 602 cases with dry skin and 1076 cases with pressure injuries in a total of 33 769 valid participants. The overall prevalence of dry skin and pressure injuries was 34.4% (95% confidence interval [CI] 33.9-34.9) and 3.1% (95% CI 2.9-3.3). Stage 2+ pressure injuries were the most (32.9%), followed by stage 1 (32.4%). The patients with dry skin had more pressure injuries than ones without dry skin (50.0% vs 33.9%). The patients with very severe and severe dry skin had more pressure injury risk (OR 2.22 and 1.90) and more stage 2+ pressure injury risk (OR 2.83 and 1.63). Other nine predictors associated with overall pressure injuries and stage 2+ pressure injuries. The area under receiver operating characteristic (ROC) curve of the predictive models of overall pressure injuries and stage 2+ pressure injuries were 0.89 (95% CI 0.88-0.90) and 0.91 (95% CI 0.90-0.92), respectively.


Subject(s)
Pressure Ulcer , Humans , Aged , Aged, 80 and over , Cross-Sectional Studies , Pressure Ulcer/epidemiology , Prospective Studies , China/epidemiology , Patients
15.
Front Psychol ; 14: 1190098, 2023.
Article in English | MEDLINE | ID: mdl-38655497

ABSTRACT

Background: This study investigated whether music training led to better length estimation and/or rightward bias by comparing the performance of musicians (pianists) and non-musicians on performance of line sections and line extensions. Methods: One hundred and sixteen participants, among them 62 musicians and 54 non-musicians, participated in the present study, completed line section and line extension task under three conditions: 1/2, 1/3 and 2/3. Results: The mixed repeated measures ANOVA analysis revealed a significant group × condition interaction, that the musicians were more accurate than non-musicians in all the line section tasks and showed no obvious pseudoneglect, while their overall performance on the line extension tasks was comparable to the non-musicians, and only performed more accurately in the 1/2 line extension condition. Conclusion: These findings indicated that there was a dissociation between the effects of music training on line section and line extension. This dissociation does not support the view that music training has a general beneficial effect on line estimation, and provides insight into a potentially important limit on the effects of music training on spatial cognition.

16.
Biomed Res Int ; 2022: 7552881, 2022.
Article in English | MEDLINE | ID: mdl-35757471

ABSTRACT

The accurate adiabatic and diabatic potential energy surfaces, which are for the two lowest states of He + H2, are presented in this study. The Molpro 2012 software package is used, and the large basis sets (aug-cc-pV5Z) are selected. The high-level MCSCF/MRCI method is employed to calculate the adiabatic potential energy points of the title reaction system. The triatomic reaction system is described by Jacobi coordinates, and the adiabatic potential energy surfaces are fitted accurately using the B-spline method. The equilibrium structures and electronic energies for the H2 are provided, and the corresponding different levels of vibrational energies of the ground state are deduced. To better express the diabatic process of the whole reaction, avoid crossing points being calculated and conical intersection also being optimized. Meanwhile, the diabatic potential energy surfaces of the reaction process are constructed. This study will be helpful for the analysis of histopathology and for the study in biological and medical mechanisms.


Subject(s)
Quantum Theory , Vibration , Thermodynamics
17.
Biomed Res Int ; 2022: 7088063, 2022.
Article in English | MEDLINE | ID: mdl-35528182

ABSTRACT

In order to study the F3 system, an accurate global adiabatic potential energy surface is reduced in the present work. The high-level ab initio (MCSCF/MRCI level) methods with big basis set aVQZ are used to calculate 27690 potential energy points in the MOLPRO quantum chemistry package using the Jacobi coordinate. Meanwhile, the B-spline fit method is used to reduce the global potential energy surface in this present work. The shallow well complexes are found in the present work when the angles θ = 30°, 60°, and 90°. Analysing the global potential energy surfaces can get the conclusion that reactants should overcome at least 0.894 eV energy to cross the transition state and reach products. This study will be helpful for the analysis in histopathology and for the study of biological and medical mechanisms.


Subject(s)
Quantum Theory
18.
Ann Bot ; 130(2): 149-158, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35311887

ABSTRACT

BACKGROUND AND AIMS: Previous studies investigating plant-plant interactions have focused on plant growth, context dependence and shifts in interactive outcomes. However, changes in functional traits in the context of interactions have been inadequately explored; few studies have focused on the effects of interactions on the plasticity of functional strategies. METHODS: We conducted a 4-year removal experiment for the xeric shrub Artemisia ordosica and perennial graminoids (PGs) in the Mu Us Desert, northern China. Soil nutrient content, biomass and 12 functional traits related to plant morphology and nutrient status were measured for the shrub species and a dominant PG species (i.e. Leymus secalinus) in the presence and absence of shrubs and PGs. KEY RESULTS: Shrubs affected the functional traits of L. secalinus, reducing leaf dry matter content and increasing plant height, which probably promoted the functional strategy of L. secalinus towards a more resource-acquisitive and competitive strategy. In contrast, when the shrubs were affected by PGs, they shifted towards a resource-conservative and stress-tolerative strategy, by increasing leaf dry matter content and decreasing specific leaf area. Moreover, the shrub species relied more on internal nutrient recycling (higher nitrogen resorption efficiency) rather than on external nitrogen uptake under nitrogen competition; instead, L. secalinus tended to exhibit higher external nitrogen uptake from soil during nitrogen shortages. CONCLUSIONS: This study indicated that the functional strategies and nutrient cycling of the shrub species and the dominant PG were altered by each other. The shifts in functional traits may help plants to coexist in the community for a relatively long time. Our findings highlighted that interspecific interactions alter plant functional strategies and provided new insights into community assembly and succession mechanisms in a revegetated shrubland for ecological restoration of drylands.


Subject(s)
Ecosystem , Plants , China , Nitrogen , Soil
19.
Mikrochim Acta ; 188(11): 401, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34729650

ABSTRACT

The Ti3C2 MXene quantum dots (Ti3C2 MQDs) derived from Ti3C2 MXene have received much attention because of their remarkable advantages in biosensing. Nevertheless, the functionalization of Ti3C2 MQDs to improve their properties is just in its infant stage. Herein, we firstly synthesized nitrogen and boron co-doped Ti3C2 MQDs (N, B-Ti3C2 MQDs) with good water solubility, strong stability, and high optical characteristics. The N, B-Ti3C2 MQDs exhibit excitation wavelength-dependent blue photoluminescence with optimal excitation/emission peaks at 335/439 nm. Nowadays, the development of fast and real-time detection of tetracycline (TC) in animal derived food is very essential. In this work, a novel point-of-care testing (POCT) platform was established based on ratiometric fluorescence method using N, B-Ti3C2 MQDs coupled with Eu3+. Upon addition of TC in the Eu3+/N, B-MQDs system, blue fluorescence emission of N, B-Ti3C2 MQDs was quenched and red fluorescence emission of Eu3+ was enhanced gradually, which was ascribed to the synergistic inner filter effect and antenna effect. Moreover, we prepared test papers with N, B-Ti3C2 MQDs and Eu3+ for TC detection based on the change of fluorescence color, which could be recognized by color recognizer app installed in the smartphone. Therefore, great promise for POCT of TC is given with the merits of simplicity and visible detection possibility. The proposed method demonstrated a low detection limit of 20 nM. Application of the platform for TC quantification in milk samples opened a novel means for the potential use of N, B-Ti3C2 MQDs in food safety.


Subject(s)
Europium/chemistry , Fluorescent Dyes/chemistry , Point-of-Care Testing , Quantum Dots/chemistry , Tetracycline/analysis , Titanium/chemistry , Animals , Anti-Bacterial Agents/analysis , Boron/chemistry , Boron/radiation effects , Europium/radiation effects , Fluorescence , Fluorescent Dyes/radiation effects , Food Contamination/analysis , Limit of Detection , Milk/chemistry , Nitrogen/chemistry , Nitrogen/radiation effects , Paper , Quantum Dots/radiation effects , Smartphone , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Titanium/radiation effects , Ultraviolet Rays
20.
Adv Skin Wound Care ; 34(7): 356-363, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33871407

ABSTRACT

OBJECTIVE: To explore the relationship between wearing protective masks and goggles and skin injuries in medical staff during the COVID-19 pandemic. METHODS: Researchers conducted a cross-sectional, multicenter online survey. Respondents voluntarily completed the questionnaire on their smartphones. Ordinal and multinomial logistic regressions were used to identify factors related to skin injuries. RESULTS: In total, 1,611 respondents wore protective masks combined with goggles in 145 hospitals in China; 1,281 skin injuries were reported (overall prevalence, 79.5%). Multiple concomitant skin injuries (68.5%) and injuries in four anatomic locations (24.0%) were the most common, followed by injuries in three (22.8%), two (21.7%), and one location (11.0%). Multinomial logistic regression indicated that sweating increased the risk of injuries in one to four anatomic locations (95% confidence interval for odds ratio 16.23-60.02 for one location and 38.22-239.04 for four locations), and wearing an N95 mask combined with goggles and a daily use longer than 4 hours increased the risk of injuries in four locations (95% confidence interval for odds ratio 1.18-5.31 and 1.14-3.93, respectively). CONCLUSIONS: The prevalence of skin injuries among medical staff wearing protective masks combined with goggles was very high. These were mainly device-related pressure injuries, moisture-associated skin damage, and skin tears. The combination of various factors resulted in skin injuries at multiple sites. Preventing and managing sweating should be a focus for medical staff who wear protective masks combined with goggles for more than 4 hours.


Subject(s)
COVID-19/prevention & control , Eye Protective Devices/adverse effects , Masks/adverse effects , Medical Staff, Hospital/statistics & numerical data , Nursing Staff, Hospital/statistics & numerical data , Occupational Injuries/etiology , Adult , Cross-Sectional Studies , Disease Transmission, Infectious/prevention & control , Facial Injuries/etiology , Humans , Internet , Male , Middle Aged , Personal Protective Equipment/adverse effects , Pressure Ulcer/etiology , Sweating
SELECTION OF CITATIONS
SEARCH DETAIL
...