Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7500, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160972

ABSTRACT

Hepatocellular carcinoma (HCC) is a symptomatic disease involed multi-stage program. Here, we elucidated the molecular mechanism of LncTUG1 in the regulation of HCC evolvement. And that may in all likelyhood supply a innovative latent target for HCC's diagnoses and prognosis. LncRNA TUG1, miR-144-3p, RRAGD and mTOR signaling pathway were screened as target genes in the database, and their expression levels at the cytological level were verified utilized qRT-PCR, Western Blot and immunohistochemistry. Then, we adopted CCK-8, Transwell and flow cytometry assays to estimate cell proliferation, invasion and apoptosis. By use of luciferase reporter assay, the relationships of LncRNA TUG1, miR-144-3p and RRAGD was confirmed. In addition, the LncRNA TUG1-miR-144-3p-RRAGD-mTOR signaling pathway in HCC cells was verified adopted rescue experiment and confirmed by xenotransplantation animal experiment. LncTUG1 in HCC tissues from three databases were identified and further verified through qRT-PCR in HCC cells (Huh7, Hep3B). Knockdown the LncTUG1 could increase apoptosis and inhibite invasion and proliferation in HCC cells. Using inhibitors and activators of the mTOR/S6K pathway, LncTUG1 was confirmed to regulate HCC progression by the mTOR/S6K pathway. Luciferase reporter assay demonstrated that TUG1 negatively regulates miR-144-3p. Furthermore, miR-144-3p negativly regulates RRAGD by way of interacting with the 3'UTR of the RRAGD mRNA in HCC utilized luciferase reporter assay. In vivo, we also discovered that neoplasm weight and tumor volume reduced significantly in subcutaneous xenograft nude mouse models derived from sh-LncTUG1-expressing Huh7 cells. And the expressions of p-mTOR, p-S6K and RRAGD were decreased obviously while the miR144-3p increased in subcutaneous xenograft nude mouse models. In a word, the research suggests that LncTUG1 targets miR-144-3p while miR-144-3p binds to RRAGD mRNA, which induces mTOR/S6K pathway activation and promotes the progression of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Signal Transduction , Cell Line, Tumor , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Ribosomal Protein S6 Kinases/metabolism , MicroRNAs/genetics , Animals , Mice , Mice, Inbred BALB C , Disease Progression , Xenograft Model Antitumor Assays
2.
Can J Gastroenterol Hepatol ; 2022: 6413783, 2022.
Article in English | MEDLINE | ID: mdl-36262827

ABSTRACT

Aims: In this report, it was investigated that hepatoma cells can cause downregulation of cytotoxic T lymphocyte (CTL) function and tea polyphenols (TPs) can reverse downregulation of CTL function. Methods: The expression of GRP78, PD-1, and TIM-3 was detected by western blotting in CTLL-2 cocultured with Hepa1-6 cells. Moreover, perforin (PRF1) and granzyme B (GzmB) protein levels and ER morphology were examined by ELISA and TEM, respectively. After 4-phenylbutyric acid (4-PBA) or tunicamycin (TM) treatment, programmed cell death protein 1 (PD-1), and mucin domain 3 (TIM-3), PRF1, and GzmB were measured by western blotting and ELISA. After sh-CHOP or GSK2656157 (PERK inhibitor) stimulation, the activation of the PERK-CHOP pathway was detected in CTLL-2 cells. Finally, changes in PD-1, TIM-3, PRF1, and GzmB levels were detected to verify the reversal of CTL depletion by TP. Results: The expression of GRP78, PD-1, and TIM-3 clearly increased, and swelling was observed for the endoplasmic reticulum (ER) in CTLL-2 cells cocultured with hepatoma cells. Concurrently, the levels of PRF1 and GzmB decreased. CTLL-2 depletion was induced after stimulation with TM and differed from 4-PBA stimulation. Treatment with sh-CHOP or GSK2656157 caused a decrease in PD-1 and TIM-3 expression, whereas the expression of PRF1 and GzmB clearly increased. After adding TP, the function of CTLs increased markedly. Conclusion: Hepatoma cells induced the depletion of CTLs through the ER stress PERK-CHOP pathway, and TP reversed this depletion by downregulating ER stress.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Programmed Cell Death 1 Receptor , Tunicamycin/pharmacology , Transcription Factor CHOP/metabolism , Granzymes/metabolism , Hepatitis A Virus Cellular Receptor 2 , eIF-2 Kinase/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Perforin , Polyphenols , Apoptosis , Mice, Inbred Strains , Liver Neoplasms/drug therapy , Signal Transduction , Mucins , Tea
3.
Front Biosci (Landmark Ed) ; 27(8): 243, 2022 08 15.
Article in English | MEDLINE | ID: mdl-36042180

ABSTRACT

BACKGROUND: Metabolic activities of tumor cells lead to a depletion of nutrients within the tumor microenvironment, which results in the dysfunction of infiltrating T cells. Here, we explored how glutamine (gln) metabolism, which is essential for biosynthesis and cellular function, can affect the functions of cytotoxic T lymphocytes (CTLs). METHODS: Activated CTLs were co-cultured with hepatoma cells. Western blot was used to analyze changes of proteins and ELISA was used to analyze changes of effector. RNA-sequencing was used to detect differentially expressed genes in CTLs. The status of the endoplasmic reticulum (ER) was investigated using transmission electron microscopy experiments. RESULTS: Co-culturing CTLs and hepatoma cells revealed that CTLL-2 cells in the co-culture group expressed high levels of PD-1 (Programmed cell death protein 1), TIM-3 (T cell immunoglobulin and mucin domain-containing protein-3), GRP78 (Glucose regulated protein 78), and P-PERK (phosphorylated protein kinase RNA-activated-like endoplasmic reticulum kinase) and secreted low levels of Granzyme B and perforin. Additionally, the substructure of the ER was severely damaged. When CTLs were treated with an inhibitor of ER stress, their functions were restored. Next, complete medium without Gln was used to culture cells, causing CTLs to display dysfunction and ER stress. WB results revealed decreased expression levels of GLS2 and SLC1A5 (Solute carrier family 1 member 5) in CTLs in the co-culture group. Subsequently, glutaminase (GLS) inhibitors were added to the cultures. As expected, CTLs treated with a GLS2 inhibitor had increased protein content of PD-1 and TIM-3, decreased secretion of Granzyme B and perforin, and an enhanced ER stress response. CONCLUSIONS: In summary, CTLs are functionally downregulated induced by hepatoma cells through the Gln-GLS2-ERS pathway.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Amino Acid Transport System ASC , Carcinoma, Hepatocellular/genetics , Endoplasmic Reticulum Stress , Glutaminase , Granzymes , Hepatitis A Virus Cellular Receptor 2 , Humans , Liver Neoplasms/genetics , Minor Histocompatibility Antigens , Perforin , Programmed Cell Death 1 Receptor , RNA , Signal Transduction , T-Lymphocytes, Cytotoxic , Tumor Microenvironment
4.
Can J Gastroenterol Hepatol ; 2021: 5596712, 2021.
Article in English | MEDLINE | ID: mdl-34123955

ABSTRACT

Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is an aggressive tumor with a high mortality rate because of the limited systemic and locoregional treatment modalities. The development and progression of HCC depend on epigenetic changes that result in the activation or inhibition of some signaling pathways. The mTOR signaling pathway is essential for many pathophysiological processes and is considered a major regulator of cancer. Increasing evidence has shown that epigenetics plays a key role in HCC biology by regulating the mTOR signaling pathway. Therefore, epigenetic regulation through the mTOR signaling pathway to diagnose and treat HCC will become a very promising strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Epigenesis, Genetic , Humans , Liver Neoplasms/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...