Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36836113

ABSTRACT

BACKGROUND: In the process of mechanical ventilation, the problem of patient-ventilator asynchrony (PVA) is faced. This study proposes a self-developed remote mechanical ventilation visualization network system to solve the PVA problem. METHOD: The algorithm model proposed in this study builds a remote network platform and achieves good results in the identification of ineffective triggering and double triggering abnormalities in mechanical ventilation. RESULT: The algorithm has a sensitivity recognition rate of 79.89% and a specificity of 94.37%. The sensitivity recognition rate of the trigger anomaly algorithm was as high as 67.17%, and the specificity was 99.92%. CONCLUSIONS: The asynchrony index was defined to monitor the patient's PVA. The system analyzes real-time transmission of respiratory data, identifies double triggering, ineffective triggering, and other anomalies through the constructed algorithm model, and outputs abnormal alarms, data analysis reports, and data visualizations to assist or guide physicians in handling abnormalities, which is expected to improve patients' breathing conditions and prognosis.

2.
Comput Intell Neurosci ; 2022: 9986611, 2022.
Article in English | MEDLINE | ID: mdl-35634050

ABSTRACT

Datasets usually suffer from supervised information missing and weak generalization ability in deep convolution neural network. In this paper, pseudolabel (PL) of Weakly Supervised Learning (WSL) was used to address the problem of supervised information missing, while Cross Network (CN) of Multitask Learning (MTL) was used to solve the problem of weak generalization ability in deep convolution neural network. In PL, the data of supervised information missing was predicted; thus, PL of the corresponding data was generated. In CN, PL data and labeled data were taken as two tasks to train together. Firstly, the labeled data was divided into training dataset and testing dataset, respectively, and image preprocessing was carried out. Secondly, the network was initialized and trained, and the model with high accuracy and good generalization was selected as the optimal model. Then, the optimal model was used to predict the unlabeled data and generate PL. Finally, the steps above were repeated several times to find a better optimal model. In the experiments of the fusion model of PL and CN, Facial Beauty Prediction was regarded as main task and the others as auxiliary tasks. Experimental results show that the model was suitable for multitask training of different tasks in different or similar datasets, and the accuracy of the main task of Facial Beauty Prediction reaches 64.76%, higher than the highest accuracy by conventional methods.


Subject(s)
Generalization, Psychological , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...