Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Adv Mater ; : e2402702, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651672

ABSTRACT

Sodium-based dual ion batteries (SDIBs) have garnered significant attention as novel energy storage devices offering the advantages of high-voltage and low-cost. Nonetheless, conventional electrolytes exhibit low resistance to oxidation and poor compatibility with electrode materials, resulting in rapid battery failure. In this study, for the first time, a chlorination design of electrolytes for SDIB, is proposed. Using ethyl methyl carbonate (EMC) as a representative, chlorine (Cl)-substituted EMC not only demonstrates increased oxidative stability ascribed to the electron-withdrawing characteristics of chlorine atom, electrolyte compatibility with both the cathode and anode is also greatly improved by forming Cl-containing interface layers. Consequently, a discharge capacity of 104.6 mAh g-1 within a voltage range of 3.0-5.0 V is achieved for Na||graphite SDIB that employs a high graphite cathode mass loading of 5.0 mg cm-2, along with almost no capacity decay after 900 cycles. Notably, the Na||graphite SDIB can be revived for an additional 900 cycles through the replacement of a fresh Na anode. As the mass loading of graphite cathode increased to 10 mg cm-2, Na||graphite SDIB is still capable of sustaining over 700 times with ≈100% capacity retention. These results mark the best outcome among reported SDIBs. This study corroborates the effectiveness of chlorination design in developing high-voltage electrolytes and attaining enduring cycle stability of Na-based energy storage devices.

2.
Sci Adv ; 10(9): eadl5893, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38437588

ABSTRACT

It is challenging to probe ergodicity breaking trends of a quantum many-body system when dissipation inevitably damages quantum coherence originated from coherent coupling and dispersive two-body interactions. Rydberg atoms provide a test bed to detect emergent exotic many-body phases and nonergodic dynamics where the strong Rydberg atom interaction competes with and overtakes dissipative effects even at room temperature. Here, we report experimental evidence of a transition from ergodic toward ergodic breaking dynamics in driven-dissipative Rydberg atomic gases. The broken ergodicity is featured by the long-time phase oscillation, which is attributed to the formation of Rydberg excitation clusters in limit cycle phases. The broken symmetry in the limit cycle is a direct manifestation of many-body collective effects, which is verified experimentally by tuning atomic densities. The reported result reveals that Rydberg many-body systems are a promising candidate to probe ergodicity breaking dynamics, such as limit cycles, and enable the benchmark of nonequilibrium phase transition.

3.
Opt Express ; 31(20): 33518-33534, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859132

ABSTRACT

We present a scheme to generate nonlocal optical Kerr nonlinearity and polaritonic solitons via matter-wave superradiance in a Rydberg-dressed Bose-Einstein condensate (BEC). We show that the polariton spectrum of the scattered field generated by the superradiance is changed significantly due to the existence of the long-range Rydberg-Rydberg interaction between atoms, i.e. it has a roton-maxon form; moreover, the BEC structure factor displays a strong dependence on the Rydberg-dressing, which can be tuned in a controllable way. We also show that such a Rydberg-dressed BEC system can support a giant nonlocal optical Kerr nonlinearity, and hence allow the formation and stable propagation of polaritonic solitons, which have ultraslow propagation velocity and ultralow generation power. The results reported here are useful to understand the unique properties of Rydberg-dressing in BECs and have potential applications in optical information processing and transmission.

4.
Heliyon ; 9(10): e20651, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860544

ABSTRACT

Long non-coding RNAs (lncRNAs) are essential in many biological areas like cell growth and apoptosis. The role of recently discovered LINC00702 is yet to be explored. Therefore, we wanted to elucidate its role in breast cancer (BC) with bioinformatic and various methods. LINC00702 expression was predicted using bioinformatic analysis and confirmed by RT-qPCR. Furthermore, the impact of LINC00702 knockdown on BC progression was evaluated. High LINC00702 level could lead to a worse outcome in BC patients. Additionally, CCK-8, EdU,and Annexin V-APC7/AAD experiments showed that LINC00702 knockdown inhibited the growth of BT-474 and T-47D cells and promoted their apoptosis. Moreover, in vivo experiments showed that shLINC00702-2 significantly reduced tumor sizes and suppressed c-Myc and ß-catenin expressions. On the contrary, a rescue assay showed that HLY78, an activator of the Wnt/ß-catenin pathway, reversed the cell-inhibiting impact of LINC00702 knockdown. LINC00702 is an oncogenic lncRNA that promotes BC progression by stimulating the Wnt/ß-catenin pathway and downstream proteins, making it a promising target for further research on BC treatment.

5.
Mol Med ; 29(1): 103, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528369

ABSTRACT

BACKGROUND: Cancers aggressively reorganize collagen in their microenvironment, leading to the evasion of tumor cells from immune surveillance. However, the biological significance and molecular mechanism of collagen alignment in breast cancer (BC) have not been well established. METHODS: In this study, BC-related RNA-Seq data were obtained from the TCGA database to analyze the correlation between DDR1 and immune cells. Mouse BC cells EO771 were selected for in vitro validation, and dual-luciferase experiments were conducted to examine the effect of TFAP2A on DDR1 promoter transcription activity. ChIP experiments were performed to assess TFAP2A enrichment on the DDR1 promoter, while Me-RIP experiments were conducted to detect TFAP2A mRNA m6A modification levels, and PAR-CLIP experiments were conducted to determine VIRMA's binding to TFAP2A mRNA and RIP experiments to investigate HNRNPC's recognition of m6A modification on TFAP2A mRNA. Additionally, an in vivo mouse BC transplant model and the micro-physiological system was constructed for validation, and Masson staining was used to assess collagen fiber arrangement. Immunohistochemistry was conducted to identify the number of CD8-positive cells in mouse BC tumors and Collagen IV content in ECM, while CD8 + T cell migration experiments were performed to measure CD8 + T cell migration. RESULTS: Bioinformatics analysis showed that DDR1 was highly expressed in BC and negatively correlated with the proportion of anti-tumor immune cell infiltration. In vitro cell experiments indicated that VIRMA, HNRNPC, TFAP2A, and DDR1 were highly expressed in BC cells. In addition, HNRNPC promoted TFAP2A expression and, therefore, DDR1 transcription by recognizing the m6A modification of TFAP2A mRNA by VIRMA. In vivo animal experiments further confirmed that VIRMA and HNRNPC enhanced the TFAP2A/DDR1 axis, promoting collagen fiber alignment, reducing anti-tumor immune cell infiltration, and promoting immune escape in BC. CONCLUSION: This study demonstrated that HNRNPC promoted DDR1 transcription by recognizing VIRMA-unveiled m6A modification of TFAP2A mRNA, which enhanced collagen fiber alignment and ultimately resulted in the reduction of anti-tumor immune cell infiltration and promotion of immune escape in BC.


Subject(s)
Immune Evasion , Neoplasms , Animals , Mice , Collagen/metabolism , Cell Movement , RNA, Messenger/genetics , Tumor Microenvironment
6.
Int Immunopharmacol ; 120: 110235, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201403

ABSTRACT

Neutrophil extracellular traps (NETs) have been implicated in many cancers, but the regulatory mechanisms in the context of breast cancer have not been thoroughly discussed. This study proposed a mechanism based on collagen-activated DDR1/CXCL5 for NET formation in breast cancer. Through TCGA and GEO-based bioinformatics analysis, we examined the DDR1 expression and the correlation of CXCL5 with immune cell infiltration in breast cancer. It was found that high DDR1 expression was correlated with poor prognosis of patients with breast cancer, and CXCL5 was positively correlated with neutrophil and Treg infiltration. Expression of DDR1 and CXCL5 was determined in collagen-treated breast cancer cells, the malignant phenotypes of which were evaluated by ectopic expression and knockdown methods. Collagen-activated DDR1 upregulated CXCL5 expression, resulting in augmented malignant phenotypes of breast cancer cells in vitro. The formation of NETs caused promotion in the differentiation and immune infiltration of Tregs in breast cancer. A in situ breast cancer mouse model was constructed, where NET formation and lung metastasis of breast cancer cells were observed. The differentiation of CD4+ T cells isolated from the mouse model was induced into Tregs, followed by Treg infiltration assessment. It was further confirmed in vivo that DDR1/CXCL5 induced the formation of NETs to promote immune infiltration of Tregs, driving tumor growth and metastasis. Accordingly, our results provided new mechanistic insights for an understanding of the role of collagen-mediated DDR1/CXCL5 in formation of NETs and Treg infiltration, revealing potential targets for therapeutic intervention of breast cancer.


Subject(s)
Extracellular Traps , Lung Neoplasms , Animals , Mice , Cell Proliferation/physiology , Collagen/metabolism , Extracellular Traps/metabolism , Lung Neoplasms/pathology , T-Lymphocytes, Regulatory/metabolism
7.
Opt Express ; 31(5): 7545-7553, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859883

ABSTRACT

We study Rydberg electromagnetically induced transparency (EIT) of a cascade three-level atom involving 80D5/2 state in a strong interaction regime employing a cesium ultracold cloud. In our experiment, a strong coupling laser couples 6P3/2 to 80D5/2 transition, while a weak probe, driving 6S1/2 to 6P3/2 transition, probes the coupling induced EIT signal. At the two-photon resonance, we observe that the EIT transmission decreases slowly with time, which is a signature of interaction induced metastability. The dephasing rate γOD is extracted with optical depth OD = γODt. We find that the optical depth linearly increases with time at onset for a fixed probe incident photon number Rin before saturation. The dephasing rate shows a nonlinear dependence on Rin. The dephasing mechanism is mainly attributed to the strong dipole-dipole interactions, which leads to state transfer from nD5/2 to other Rydberg states. We demonstrate that the typical transfer time τ0(80D) obtained by the state selective field ionization technique is comparable with the decay time of EIT transmission τ0(EIT). The presented experiment provides a useful tool for investigating the strong nonlinear optical effects and metastable state in Rydberg many-body systems.

8.
J Oncol ; 2022: 5483523, 2022.
Article in English | MEDLINE | ID: mdl-35813865

ABSTRACT

Background: Chemoresistance poses a great hindrance in the treatment of breast cancer (BC). Interestingly, exosome (Exo)-mediated transfer of long noncoding RNAs (lncRNAs) has been reported to regulate chemoresistance in diverse diseases. We herein investigate the potential role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) transferred by BC cell-derived Exo in chemoresistance of BC cells. Methods: BC-related lncRNAs were identified. Exosomes were isolated and verified from BC cells. The expression patterns of MALAT1 were then examined in the adriamycin (ADR)-sensitive and resistant cells and the isolated Exo, followed by the analysis of the downstream microRNA (miRNA) of MALAT1. The role and mechanism of MALAT1 transmitted by BC cell-derived Exo in BC cell metastasis and chemoresistance were assessed. Results: MALAT1 was highly expressed in BC cells and their Exo. In addition, MALAT1 delivered by BC cell-derived Exo augmented the malignant properties and chemoresistance of BC cells. Mechanistically, MALAT1 bound to miR-1-3p and limited the miR-1-3p expression, which sequentially targeted the vasodilator-stimulated phosphoprotein (VASP) protein. Moreover, silencing of VASP inhibited the activation of the RAP1 member of RAS oncogene family (Rap1) signaling pathway, which led to the attenuation of BC cell malignant properties and chemoresistance. In vivo assay further validated the tumor-promoting effect of Exo-MALAT1 via regulation of the miR-1-3p/VASP/Rap1 axis. Conclusion: Collectively, MALAT1 loaded by BC cell-derived Exo can accelerate BC cell metastasis and chemoresistance via disruption of miR-1-3p-mediated inhibition of the VASP/Rap1 signaling axis.

9.
Cancer Cell Int ; 22(1): 112, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35255904

ABSTRACT

BACKGROUND: Abnormal DNA methylation of tumor suppressor gene promoter has been found in breast cancer. Therefore, the current study set out to explore how DNA methyltransferase 1 (DNMT1) affects breast cancer through mediating miR-497/GPRC5A axis. METHODS: After loss and gain-of-function approaches were conducted in MCF-7/ADR and MCF-7 cells, cell viability, IC50 value, invasion, migration and apoptosis were measured, respectively. In addition, drug resistance, metastasis and apoptosis-related protein expression were examined using immunoblotting. ChIP and dual-luciferase reporter gene assays were carried out to validate relationship among DNMT1, miR-497, and GPRC5RA. Subcutaneous xenograft tumor model in nude mice was established to detect effects of DNMT1 on growth and metastasis of breast cancer in vivo. RESULTS: It was found that DNMT1 was notably increased, while miR-497 was poorly-expressed in breast cancer. Highly-expressed DNMT1 could promote chemotherapy resistance and metastasis of breast cancer. Meanwhile, DNMT1 modified methylation of CpG island in miR-497 promoter region, thereby repressing miR-497 level. In addition, miR-497 targeted GPRC5A expression to curb chemotherapy resistance and metastasis of breast cancer cells. Lastly, in vivo experiments showed that knockdown of DNMT1 could suppress breast cancer growth and metastasis. CONCLUSIONS: Collectively, our findings indicated that DNMT1 may inhibit miR-497 and boost the expression of GPRC5A through methylation, thus augmenting breast cancer chemotherapy resistance and metastasis, which provides novel mechanistic insight into the unrecognized roles of DNMT1 in breast cancer.

10.
Opt Express ; 28(7): 9677-9689, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225570

ABSTRACT

We study electromagnetically induced transparency in a three-level ladder type configuration in ultracold atomic gases, where the upper level is an electronically highly excited Rydberg state. An effective distance dependent two-body dephasing can be induced in a regime where dipole-dipoles interaction couple nearly degenerate Rydberg pair states. We show that strong two-body dephasing can enhance the excitation blockade of neighboring Rydberg atoms. Due to the dissipative blockade, transmission of the probe light is reduced drastically by the two-body dephasing in the transparent window. The reduction of transmission is accompanied by a strong photon-photon anti-bunching. Around the Autler-Townes doublets, the photon bunching is amplified by the two-body dephasing, while transmission is largely unaffected. Besides relevant to the ongoing Rydberg atom studies, our study moreover provides a setting to explore and understand two-body dephasing dynamics in many-body systems.

11.
Phys Rev Lett ; 125(26): 263605, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33449776

ABSTRACT

We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors where the laser resonantly excites atoms to Rydberg P states via a single-photon transition. Three different regimes of the light-atom interaction, dominated by either Doppler broadening, Rydberg atom interactions, or decay due to thermal collisions between ground state and Rydberg atoms, are found. We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect as well as collisional decay, leading to a sizable dispersive optical nonlinearity on nanosecond timescales. In this regime, self-induced transparency (SIT) emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction, rather than the area theorem of interaction-free SIT. We identify, both numerically and analytically, the condition to realize Rydberg SIT. Our study contributes to efforts in achieving quantum information processing using glass cell technologies.

12.
Opt Express ; 25(21): 25447-25466, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041212

ABSTRACT

We consider an array of the meta-atom consisting of two cut-wires and a split-ring resonator coupled with an electromagnetic field with two polarization components. We show that the system can be taken as a classical analogue of the atomic medium of a double-Λ-type four-level configuration coupled with four laser fields and working under the condition of electromagnetically induced transparency, exhibits an effect of plasmon induced transparency (PIT), and displays a similar behavior of atomic four-wave mixing (FWM). We show also that with the PIT and FWM effects the system can support vector plasmonic dromions when a nonlinear varactor is mounted onto the each gap of the split-ring resonator. Our work not only gives a plasmonic analogue of the FWM in coherent atomic systems but also provides the possibility for obtaining new type of plasmonic excitations in metamaterials.

13.
Opt Express ; 25(2): 785-798, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28157967

ABSTRACT

We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.

14.
Opt Express ; 24(5): 4442-4461, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092273

ABSTRACT

We investigate the optical Kerr nonlinearities of an ensemble of cold Rydberg atoms under the condition of electromagnetically induced transparency (EIT). By using an approach beyond mean-field theory, we show that the system possesses not only enhanced third-order nonlinear optical susceptibility, but also giant fifth-order nonlinear optical susceptibility, which has a cubic dependence on atomic density. Our results demonstrate that both the third-order and the fifth-order nonlinear optical susceptibilities consist of two parts, contributed respectively by photon-atom interaction and Rydberg-Rydberg interaction. The Kerr nonlinearity induced by the Rydberg-Rydberg interaction plays a leading role at high atomic density. We find that the fifth-order nonlinear optical susceptibility in the Rydberg-EIT system may be five orders of magnitude larger than that obtained in traditional EIT systems. The results obtained may have promising applications in light and quantum information processing and transmission at weak-light level.

15.
Sci Rep ; 5: 13780, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26348579

ABSTRACT

We propose a method to enhance Kerr nonlinearity and realize low-power gigahertz solitons via plasmon-induced transparency (PIT) in a new type of metamaterial, which is constructed by an array of unit cell consisting of a cut-wire and a pair of varactor-loaded split-ring resonators. We show that the PIT in such metamaterial can not only mimic the electromagnetically induced transparency in coherent three-level atomic systems, but also exhibit a crossover from PIT to Autler-Townes splitting. We further show that the system suggested here also possess a giant third-order nonlinear susceptibility and may be used to create solitons with extremely low generation power. Our study raises the possibility for obtaining strong nonlinear effect of gigahertz radiation at very low intensity based on room-temperature metamaterials.

16.
Asia Pac J Public Health ; 27(8): 860-70, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26316500

ABSTRACT

After the Wenchuan earthquake, a large number of studies have focused on postearthquake psychological disorders among survivors; however, most of these studies were conducted within a relatively short period. This study was conducted to examine the symptoms of posttraumatic stress disorder (PTSD) and general psychiatric morbidity among adult survivors 3 years after the Wenchuan earthquake, China. Through a multistage systematic sampling approach, a cross-sectional survey of 360 participants, 18 years or older, was conducted. The prevalence of PTSD and general psychiatric morbidity was 10.3% and 20.6%, respectively. Multivariate analysis revealed significant predictors for PTSD, including female gender and having felt guilt concerning someone's death or injury. Significant predictors for general psychiatric morbidity included unmarried status and having been in serious danger. These results suggest that mental health services should be continuously available to earthquake survivors.


Subject(s)
Disasters , Earthquakes , Mental Disorders/epidemiology , Stress Disorders, Post-Traumatic/epidemiology , Survivors/psychology , Adolescent , Adult , Aged , Aged, 80 and over , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prevalence , Risk Factors , Survivors/statistics & numerical data , Young Adult
17.
Sci Rep ; 5: 8211, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25645119

ABSTRACT

A robust light storage and retrieval (LSR) in high dimensions is highly desirable for light and quantum information processing. However, most schemes on LSR realized up to now encounter problems due to not only dissipation, but also dispersion and diffraction, which make LSR with a very low fidelity. Here we propose a scheme to achieve a robust storage and retrieval of weak nonlinear high-dimensional light pulses in a coherent atomic gas via electromagnetically induced transparency. We show that it is available to produce stable (3 + 1)-dimensional light bullets and vortices, which have very attractive physical property and are suitable to obtain a robust LSR in high dimensions.

18.
Opt Express ; 21(15): 17736-44, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23938646

ABSTRACT

We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.


Subject(s)
Electromagnetic Fields , Manufactured Materials , Models, Theoretical , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Terahertz Radiation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...