Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
PLoS One ; 19(5): e0302068, 2024.
Article in English | MEDLINE | ID: mdl-38758945

ABSTRACT

The electric power sector is the primary contributor to carbon emissions in China. Considering the context of dual carbon goals, this paper examines carbon emissions within China's electricity sector. The research utilizes the LMDI approach for methodological rigor. The results show that the cumulative contribution of economies scale, power consumption factors and energy structure are 114.91%, 85.17% and 0.94%, which contribute to the increase of carbon emissions, the cumulative contribution of power generation efficiency and ratio of power dissipation to generation factor are -19.15% and -0.01%, which promotes the carbon reduction. The decomposition analysis highlights the significant influence of economic scale on carbon emissions in the electricity industry, among the seven factors investigated. Meanwhile, STIRPAT model, Logistic model and GM(1,1) model are used to predict carbon emissions, the average relative error between actual carbon emissions and the predicted values are 0.23%, 8.72% and 7.05%, which indicates that STIRPAT model is more suitable for medium- to long-term predictions. Based on these findings, the paper proposes practical suggestions to reduce carbon emissions and achieve the dual carbon goals of the power industry.


Subject(s)
Carbon , Electricity , China , Carbon/analysis , Industry , Power Plants , Models, Theoretical
2.
J Mol Model ; 30(4): 116, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561503

ABSTRACT

INTRODUCTION: The electronic and optical properties of ß-Ga2O3 have been investigated by CASTEP using first principles. It is found that ß-Ga2O3 has an indirect band gap and the conduction band base is located at the Γ point. The stability of ß-Ga2O3 is demonstrated by the calculation of elastic constants, and the ductility of ß-Ga2O3 is demonstrated by the ratio of Poisson's ratio to shear modulus. The optical property analysis shows that ß-Ga2O3 has a high absorption capacity in the ultraviolet region, but a low absorption capacity in visible and infrared light. CONTEXT: The structure, optical, and electronic properties of ß-Ga2O3 are calculated and analyzed based on first-principles calculation. The optimized structures of ß-Ga2O3 are in good agreement with previously studied. In this paper, the elastic, electronic, and optical properties of ß-Ga2O3 are calculated. METHODS: The CASTEP code was employed to execute these calculations in the present work, where the exchange-correlation interactions were treated in the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional in the geometry optimizations and electronic and elastic properties.

3.
J Mol Model ; 30(5): 140, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639769

ABSTRACT

CONTEXT: In order to study the relationship between the sensitivity and pressure of energetic materials, six kinds of energetic materials were selected as the research object. The crystal structure, electronic, and phonon properties under hydrostatic pressure of 0 ~ 45 GPa were calculated by first principles. The calculation results show that the lattice parameters and band gap values of these six energetic materials decrease with the increase of pressure. The peak of the density of states decreases and moves to the low energy direction, and the electrons become more active. Meanwhile, the effect of pressure on the sensitivity of the energetic materials is analyzed based on the multi-phonon up-pumping theory. The number of doorway modes and integral of projected phonon density of states under high pressure is calculated. The results show that both of them increase with the increase of pressure. And the smaller the value of the band gap, the larger the number of doorway modes and integral of projected phonon density of states, and the more sensitive the energetic material is. METHODS: All calculations are performed using the Materials Studio software based on density functional theory. The Perdew-Burke-Ernzerhof (PBE) functional of the generalized gradient approximation (GGA) is used to calculate the exchange correlation function, and the Grimme dispersion correction method is used to deal with the weak intermolecular interaction. The structure of the compound was optimized by BFGS algorithm. The linear response is used to calculate the phonon properties of energetic materials. The plane wave cutoff energy was set to 830 eV. The K-point grids of TATB, FOX-7, TNX, RDX, TNT, and HMX were chosen as 2 × 2 × 2, 2 × 2 × 1, 2 × 1 × 1, 1 × 1 × 1, 1 × 2 × 1, and 2 × 1 × 2.

4.
Medicine (Baltimore) ; 103(8): e37207, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394500

ABSTRACT

Metabolic reprogramming of energy is a newly recognized characteristic of cancer. In our current investigation, we examined the possible predictive importance of long noncoding RNAs (lncRNAs) associated to fatty acid metabolism in clear cell renal cell carcinoma (ccRCC). We conducted an analysis of the gene expression data obtained from patients diagnosed with ccRCC using the Cancer Genome Atlas (TCGA) database and the ArrayExpress database. We performed a screening to identify lncRNAs that are differentially expressed in fatty acid metabolism. Based on these findings, we developed a prognostic risk score model using these fatty acid metabolism-related lncRNAs. We then validated this model using Cox regression analysis, Kaplan-Meier survival analysis, and principal-component analysis (PCA). Furthermore, the prognostic risk score model was successfully validated using both the TCGA cohort and the E-MTAB-1980 cohort. We utilized gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) to determine the correlation between fatty acid metabolism and the PPAR signaling pathway in patients with ccRCC at various clinical stages and prognoses. We have discovered compelling evidence of the interaction between immune cells in the tumor microenvironment and tumor cells, which leads to immune evasion and resistance to drugs. This was achieved by the utilization of advanced techniques such as the CIBERSORT method, ESTIMATE R package, ssGSEA algorithm, and TIMER database exploration. Ultimately, we have established a network of competing endogenous RNA (ceRNA) that is related to fatty acid metabolism. The findings of our study suggest that medicines focused on fatty acid metabolism could be clinically significant for individuals with ccRCC. The utilization of this risk model, which is centered around the lncRNAs associated with fatty acid metabolism, could potentially provide valuable prognostic information and hold immunotherapeutic implications for patients with ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/genetics , RNA, Long Noncoding/genetics , Biomarkers , Kidney Neoplasms/genetics , Fatty Acids , Tumor Microenvironment/genetics
5.
Ann Vasc Surg ; 100: 39-46, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38104925

ABSTRACT

BACKGROUND: To evaluate the safety and efficacy of endovascular denervation (EDN) as an adjunct to percutaneous vascular intervention (PVI) for peripheral artery disease (PAD). METHODS: From August 2019 to April 2021, 38 eligible patients with PAD enrolled in this study were randomly and equally assigned into 2 groups: the PVI group and the PVI + EDN group treated with EDN at the iliac and femoral arteries before PVI. The primary endpoint was the improvement in the ankle brachial index at 6 months after the procedure. The secondary endpoints were transcutaneous oxygen pressure (TcPO2), Rutherford category, numerical rating scale score, and safety. RESULTS: The technical success rates of PVI and EDN were 100%, and no device-related or procedure-related major adverse events occurred in either group. Compared with PVI alone, PVI + EDN demonstrated a significant improvement in limb hemodynamics at 6 months (Δ ankle brachial index 0.44 ± 0.31 vs. 0.24 ± 0.15, P = 0.018). Microcirculatory perfusion of PAD was significantly better at 6 months in the PVI + EDN group (ΔTcPO2, 15.68 ± 16.72 vs. 4.95 ± 13.43, P = 0.036). The Rutherford category was significantly improved in the PVI + EDN group in comparison with the PVI group at the 3-month follow-up (100.00% vs. 68.42%, P = 0.02). The decrease in the numerical rating scale score in the PVI + EDN group was greater than that in the PVI group at 1 week following the procedure (3 [2-5] vs. 4 [4-6], P = 0.022). CONCLUSIONS: In this single-center pilot analysis of a heterogeneous cohort of patients with PAD, PVI with EDN demonstrated a significant improvement in limb ischemia at 6 months compared with PVI alone.


Subject(s)
Endovascular Procedures , Peripheral Arterial Disease , Humans , Microcirculation , Treatment Outcome , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/surgery , Ischemia/diagnostic imaging , Ischemia/surgery , Denervation , Endovascular Procedures/adverse effects , Endovascular Procedures/methods , Risk Factors
6.
RSC Med Chem ; 14(12): 2473-2495, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38107167

ABSTRACT

Recently nanoparticle-based platforms have gained interest as drug delivery systems and diagnostic agents, especially in cancer therapy. With their ability to provide preferential accumulation at target sites, nanocarrier-constructed antitumor drugs can improve therapeutic efficiency and bioavailability. In contrast, metal-organic frameworks (MOFs) have received increasing academic interest as an outstanding class of coordination polymers that combine porous structures with high drug loading via temperature modulation and ligand interactions, overcoming the drawbacks of conventional drug carriers. FeIII-based MOFs are one of many with high biocompatibility and good drug loading capacity, as well as unique Fenton reactivity and superparamagnetism, making them highly promising in chemodynamic and photothermal therapy, and magnetic resonance imaging. Given this, this article summarizes the applications of FeIII-based MOFs in three significant fields: chemodynamic therapy, photothermal therapy and MRI, suggesting a logical route to new strategies. This article concludes by summarising the primary challenges and development prospects in these promising research areas.

7.
Phys Chem Chem Phys ; 25(40): 27488-27497, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37800301

ABSTRACT

The sensitivity of energetic materials along different crystal directions is not the same and is anisotropic. In order to explore the difference in friction sensitivity of different surfaces, we calculated the structure, excess energy, surface energy, electronic structure, and the nitro group along (1 1 1), (1 1 0), (1 0 1), (0 1 1), (0 0 1), (0 1 0), and (1 0 0) surfaces of EDNA based on density functional theory. The analysis results showed that relative to other surfaces, the (0 0 1) surface has the shortest N-N average bond length, largest N-N average bond population, smallest excess energy and surface energy, widest band gap, and the largest nitro group charge value, which indicates that the (0 0 1) surface has the lowest friction sensitivity compared to other surfaces. Furthermore, the conclusions obtained by analyzing the excess energy are consistent with the results of the N-N bond length and bond population, band gap, and nitro charge. Therefore, we conclude that the friction sensitivity of different surfaces of EDNA can be evaluated using excess energy.

8.
Medicine (Baltimore) ; 102(40): e35086, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37800802

ABSTRACT

During the course of treating non-small cell lung cancer (NSCLC) with epithelial growth factor receptor (EGFR) mutant, gefitinib resistance (GR) is unavoidable. As the environment for tumor cells to grow and survive, tumor microenvironment (TME) can significantly affect therapeutic response and clinical outcomes, offering new opportunities for addressing GR. Dynamic changes within the TME were identified during the treatment of gefitinib, suggesting the close relationship between TME and GR. Various dynamic processes like angiogenesis, hypoxia-pathway activation, and immune evasion can be blocked so as to synergistically enhance the therapeutic effects of gefitinib or reverse GR. Besides, cellular components like macrophages can be reprogrammed for the same purpose. In this review, we summarized recently proposed therapeutic targets to provide an overview of the potential roles of TME in treating gefitinib-resistant NSCLC, and discussed the difficulty of applying these targets in cancer treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Gefitinib , Lung Neoplasms , Humans , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Gefitinib/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Tumor Microenvironment
9.
J Minim Access Surg ; 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37706416

ABSTRACT

Background: Recent years have seen an increase in gastric cancer incidence. The most effective method of treating gastric cancer is still surgical resection. Over the past few decades, minimally invasive surgery has rapidly developed, reducing post-operative complications and speeding up recovery. However, the technical difficulties, especially during anastomosis, hinder the widespread use of this advanced surgery. The aim of this study was to investigate the safety and efficacy of self-pulling and latter transection in totally laparoscopic total gastrectomy (SPLT-TLTG). Patients and Methods: A retrospective study compared the outcomes of laparoscopic-assisted total gastrectomy (LATG) and SPLT-TLTG in patients with gastric cancer. Eighty patients who underwent either LATG or SPLT-TLTG between January 2016 and June 2018 were included in the study. Clinical information was used to compare patients who underwent these surgeries. Results: Compared to LATG, patients who received SPLT-TLTG surgery recovered faster than those who received LATG time (operation and digestive tract reconstruction), blood loss, rehabilitation, first flatus, oral food intake, average pain score and hospital stay were significantly shorter in the SPLT-TLTG group than in the LATG group (P < 0.05). However, the two groups had no significant differences in LNs and baseline characteristics. Conclusions: The findings of this study provide significant evidence in support of the use of self-pulling and the latter transection procedures in total laparoscopic gastrectomy.

10.
Molecules ; 28(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37764434

ABSTRACT

Due to their almost zero relative hydrogen atom adsorption-free energy, MoS2-based materials have received substantial study. However, their poor electronic conductivity and limited number of catalytic active sites hinder their widespread use in hydrogen evolution reactions. On the other hand, metal clusters offer numerous active sites. In this study, by loading Ni metal clusters on MoS2 and combining them with the better electrical conductivity of graphene, the overpotential of the hydrogen evolution reaction was reduced from 165 mV to 92 mV at 10 mA·cm-2. This demonstrates that a successful method for effectively designing water decomposition is the use of synergistic interactions resulting from interfacial electron transfer between MoS2 and Ni metal clusters.

11.
Phys Chem Chem Phys ; 25(32): 21684-21698, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37551777

ABSTRACT

A systematic quantum-chemical study of the hydrogenation of ethene, catalyzed by strong acids HX (X = F, Cl, Br) and superacids HA (A = MgX3, Mg2X5; X = F, Cl, Br) arising from octet superhalogens is explored. Two possible paths are proposed, concerted and stepwise, and the calculated results show that the concerted path is more favorable than the stepwise path. Compared to the hydrogenation reaction without any catalyst, the improvement of the catalytic efficiency of the superacid HA (A = MgX3, Mg2X5) is high, up to 38.8 to 59.4%. Compared to the strong acid HX (X = F, Cl, Br), the barrier energy is significantly reduced and the improvement of the catalytic efficiency of the superacid HA reaches 23.1 to 31.7%. In particular, for HMg2Br5, the barrier energy of the hydrogenation of ethene is only 36 kcal mol-1, which shows that the reaction could proceed under experimental conditions. In addition, the results show that the catalytic efficiency of the superacid HA is related to the acidity of the superacid. In general, the greater the acidity, the lower the barrier energy and the easier the hydrogenation reaction. From the analysis of the bond order, the newly formed C-H bond of the transition state (TS3) in the concerted path, in which the H atom comes from the superacid catalyst, directly affects the barrier energy of the entire reaction. For the more acidic catalyst, this H atom is provided more easily, and then the formed C-H bond in the transition state is stronger. Consequently, this stronger bond leads to a more stable transition state, and hence to a lower energy barrier as well as a higher efficiency of the superacid catalyst. Therefore, a positive correlation between the acidity of the metal-free catalyst and its catalytic efficiency is expected in the hydrogenation reaction.

12.
J Pharm Anal ; 13(7): 806-816, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577386

ABSTRACT

Hepatotoxicity induced by bioactive constituents in traditional Chinese medicines or herbs, such as bavachin (BV) in Fructus Psoraleae, has a prolonged latency to overt drug-induced liver injury in the clinic. Several studies have described BV-induced liver damage and underlying toxicity mechanisms, but little attention has been paid to the deciphering of organisms or cellular responses to BV at no-observed-adverse-effect level, and the underlying molecular mechanisms and specific indicators are also lacking during the asymptomatic phase, making it much harder for early recognition of hepatotoxicity. Here, we treated mice with BV for 7 days and did not detect any abnormalities in biochemical tests, but found subtle steatosis in BV-treated hepatocytes. We then profiled the gene expression of hepatocytes and non-parenchymal cells at single-cell resolution and discovered three types of hepatocyte subsets in the BV-treated liver. Among these, the hepa3 subtype suffered from a vast alteration in lipid metabolism, which was characterized by enhanced expression of apolipoproteins, carboxylesterases, and stearoyl-CoA desaturase 1 (Scd1). In particular, increased Scd1 promoted monounsaturated fatty acids (MUFAs) synthesis and was considered to be related to BV-induced steatosis and polyunsaturated fatty acids (PUFAs) generation, which participates in the initiation of ferroptosis. Additionally, we demonstrated that multiple intrinsic transcription factors, including Srebf1 and Hnf4a, and extrinsic signals from niche cells may regulate the above-mentioned molecular events in BV-treated hepatocytes. Collectively, our study deciphered the features of hepatocytes in response to BV insult, decoded the underlying molecular mechanisms, and suggested that Scd1 could be a hub molecule for the prediction of hepatotoxicity at an early stage.

13.
J Affect Disord ; 339: 333-341, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37442447

ABSTRACT

BACKGROUND: The optimal dosage and method of esketamine for postpartum depressive symptoms (PDS) are unclear. We conducted a randomized controlled trial (RCT) to investigate the effect of different doses of esketamine on PDS in women undergoing cesarean section, with evidence of prenatal depression. METHODS: The three groups were high- (2 mg kg-1) and low-dose (1 mg kg-1) esketamine via patient controlled intravenous analgesia (PCIA), following an initial intravenous infusion of 0.25 mg kg-1 esketamine, compared to placebo (0.9 % saline infusion). All groups also received the sufentanil (2.2 µg kg-1). The primary outcome was the incidence of PDS at 7 and 42 days postpartum. The secondary outcomes were: the remission from depression and total EPDS scores at 7 days and 42 days postpartum; mean change from baseline in the EPDS score; postoperative analgesia. RESULTS: i). 0.25 mg kg-1 of esketamine intravenous infusion combined with 1 mg kg-1 (n = 99) or 2 mg kg-1 (n = 99) esketamine PCIA reduces PDS incidence at 7 days postpartum (p < 0.05), with high-dose esketamine PCIA also reduces PDS incidence 42 days postpartum (p < 0.05), compared to placebo (n = 97). ii). Low- and high-dose esketamine PCIA lowers NRS scores at rest within 48 h postoperatively (p < 0.01), with high-dose esketamine also reducing the NRS score during movement at 48 h postoperatively (p = 0.018). iii). Neither high- nor low-dose esketamine PCIA increased postoperative adverse reactions (p > 0.05). CONCLUSIONS: Esketamine (0.25 mg kg-1) intravenous infusion combined with 1 mg kg-1 or 2 mg kg-1 esketamine PCIA seems safe and with few adverse effects in the management of PDS and pain in women undergoing cesarean section. LIMITATIONS: The tolerability and safety of esketamine requires further investigation based on more specific scales; the transient side effects of esketamine could have biased the staff and patients. TRIAL REGISTRATION: ChiCTR-ROC-2000039069.


Subject(s)
Depression , Ketamine , Pregnancy , Female , Humans , Ketamine/adverse effects , Postpartum Period , Cesarean Section/adverse effects , Double-Blind Method
14.
Toxics ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37368592

ABSTRACT

Preeclampsia (PE) refers to a disease with new hypertension and albuminuria or other end-organ damage after 20 weeks of pregnancy. As a major complication of pregnancy, PE can increase the morbidity and mortality of pregnant women and fetuses and cause serious social burden. Recently, it has been found that exposure to xenobiotic compounds, especially endocrine disruptors in the environment, may contribute to the development of PE. However, the underlying mechanism is still unclear. It is generally believed that PE is related to placental dysplasia, spiral artery remodelling failure, oxidative stress, etc. Therefore, in order to better prevent the occurrence of PE and reduce the damage and impact on mother and fetus, this paper reviews the role and potential mechanism of PE induced by exogenous chemicals and provides an outlook on the environmental etiology of PE.

15.
Pharmaceutics ; 15(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37242566

ABSTRACT

Metal-phenolic networks (MPNs) are a new type of nanomaterial self-assembled by metal ions and polyphenols that have been developed rapidly in recent decades. They have been widely investigated, in the biomedical field, for their environmental friendliness, high quality, good bio-adhesiveness, and bio-compatibility, playing a crucial role in tumor treatment. As the most common subclass of the MPNs family, Fe-based MPNs are most frequently used in chemodynamic therapy (CDT) and phototherapy (PTT), where they are often used as nanocoatings to encapsulate drugs, as well as good Fenton reagents and photosensitizers to improve tumor therapeutic efficiency substantially. In this review, strategies for preparing various types of Fe-based MPNs are first summarized. We highlight the advantages of Fe-based MPNs under the different species of polyphenol ligands for their application in tumor treatments. Finally, some current problems and challenges of Fe-based MPNs, along with a future perspective on biomedical applications, are discussed.

16.
Huan Jing Ke Xue ; 44(5): 2879-2888, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177959

ABSTRACT

Shanxi is one of the main producing areas of Forsythia suspensa in China. In order to explore the safety of the soil in the areas where Forsythia suspensa grows,70 surface (0-25 cm) soil samples were collected from the main growing areas of F. suspensa in the eastsouth of Shanxi Province in July 2017. The concentration and composition characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in the sample soils were analyzed using chemical extraction and gas chromatography-mass spectrometry (GC-MS). The diagnostic ratio method was used to determine the source of PAHs in the areas. The potential ecological risk was assessed by using the method of calculating the equivalent carcinogenic concentration of benzo[a]pyrene. The results showed that the average concentration of total PAHs (Σ16PAHs) in all of the soil samples was 1.85 µg·g-1, which was dominated by three ring number PAHs, accounting for 76.7% of the total PAHs. The detection rates of phenanthrene (Phe) and anthracene (Ant) were both 100% of all the sample sites. The soil PAHs in the wild F. suspensa growing areas mainly originated from coal, biomass burning, and motor vehicle exhaust emissions, which resulted from air transport and sedimentation pathways. In all of the sample sites, the concentration of Σ16PAHs the limit standard level (0.2 µg·g-1) of Maliszewska-Kordybach for agricultural soil pollution and exceeded the soil heavy pollution level limit value (1.0 µg·g-1) in 41.4% of the sample sites. The concentration of BaP was above the risk control standard for soil contamination of agricultural land (0.55 µg·g-1) in 10% of all the soil samples. A total of 11.4% of the sample soil ΣBaPeq16PAHs and ΣBaPeq8BPAHs exceeded the agricultural soil screening value (0.55 µg·g-1). These results indicate that the contamination of PAHs was at a detectable level in the soil of wild F. suspensa growing in Shanxi, and thus their potential ecological risks should not be ignored. It is necessary to enhance the research regarding these areas to ensure the safe production of medicinal plants.


Subject(s)
Forsythia , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Environmental Monitoring/methods , Soil Pollutants/analysis , China , Vehicle Emissions/analysis , Environmental Pollution/analysis , Risk Assessment
17.
Huan Jing Ke Xue ; 44(4): 1821-1829, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040933

ABSTRACT

To investigate the characteristics and formation mechanism of ozone (O3) pollution in an industrial city, an extensive one-month field campaign focusing on O3 and its precursors (e.g., volatile organic compounds[VOC] and nitrogen oxides[NOx]) was conducted in Zibo City, a highly industrializd city in the North China Plain, in June 2021. The 0-D box model incorporating the latest explicit chemical mechanism (MCMv3.3.1) was applied using an observation dataset (e.g., VOC, NOx, HONO, and PAN) as model contraints to explore the optimal reduction strategy for O3 and its precursors. The results showed that ① during high-O3 episodes, stagnant weather conditions with high temperature and solar radiation as well as low relative humidity were observed, and oxygenated VOCs and alkenes from anthropogenic VOCs contributed the most to the total ozone formation potential and OH reactivity (k·OH). ② The in-situ O3 variation was primarily affected by local photochemical production and export process horizontal to downwind areas or vertical to the upper layer. The reduction in local emissions was essential to alleviate O3 pollution in this region. ③ During high-O3 episodes, high concentrations of ·OH (10×106 cm-3) and HO2· (14×108 cm-3) radical drove and generated a high O3 production rate (daytime peak value reached 36×10-9 h-1). The reaction pathways of HO2·+NO and ·OH+NO2 contributed the most to the in-situ gross Ox photochemical production (63%) and photochemical destruction (50%), respectively. ④ Compared to those during low-O3 episodes, the photochemical regimes during high-O3 episodes were more inclined to be considered as the NOx-limited regime. Detailed mechanism modeling based on multiple scenarios further suggested that the synergic emission reduction strategy of NOx and VOC, while focusing on NOx emission alleviation, would be practical options for controlling local O3 pollutions. This method could also provide policy-related guidance for the precise O3 pollution prevention and control in other industrialized Chinese cities.

18.
Dalton Trans ; 52(19): 6226-6238, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37070759

ABSTRACT

Cancer has become the second leading reason for death in the world. Still, cancer therapy development is exceptionally challenging because the tumor microenvironment is very complex, and individual tumors are very different. In recent years, researchers have found that platinum-based drugs in the form of metal complexes can effectively solve tumor resistance. In this regard, metal-organic frameworks (MOFs) as suitable carriers with high porosity are also exceptional in the biomedical field. Therefore, this article reviews the application of platinum as an anticancer drug and the composite anticancer properties of platinum and MOF materials and prospects for its future development, which provides a new direction for further research in the biomedical field.


Subject(s)
Antineoplastic Agents , Metal-Organic Frameworks , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Tumor Microenvironment
19.
Exp Parasitol ; 249: 108503, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36925097

ABSTRACT

Trichinella spiralis is a zoonotic parasite with worldwide distribution that can seriously harm human health and animal husbandry. Ornithine decarboxylase is a component of the acid resistance (AR) system in Escherichia coli. The aim of this study was to investigate the role that T. spiralis ornithine decarboxylase (TsODC) plays in the acid resistance mechanism of T. spiralis. This study involved assessing the transcription and expression of TsODC in worms under acidic conditions. According to mRNA sequences published by NCBI and the results of molecular biology experiments, the complete TsODC sequence was cloned and expressed. rTsODC had good immunogenicity, and immunofluorescence analysis revealed that TsODC was principally localized on the surface tissues of the nematode, especially at the head and tail. qRT‒PCR and Western blotting analysis indicated that the relative expression levels of TsODC mRNA and protein were highest when cultured at pH 2.5 for 2 h. The muscle larvae (ML) of T. spiralis were treated with curcumin and rapamycin, as well as arginine and TsODC polyantisera. The expression levels of TsODC mRNA and protein were significantly increased by arginine and suppressed by curcumin and rapamycin. After reducing the amount of TsODC, the relative expression of TsODC mRNA and the survival rate of T. spiralis ML were both reduced when compared to these values in the phosphate-buffered saline (PBS) group. The results indicated that TsODC is a member of the T. spiralis AR system and different treatments on TsODC have different effects; thus, these treatments might be a new way to prevent T. spiralis infection.


Subject(s)
Curcumin , Trichinella spiralis , Trichinellosis , Animals , Humans , Trichinellosis/parasitology , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Antigens, Helminth/genetics , Helminth Proteins/genetics , Larva/metabolism
20.
J Vasc Interv Radiol ; 34(7): 1135-1142, 2023 07.
Article in English | MEDLINE | ID: mdl-36906134

ABSTRACT

PURPOSE: To analyze the risk factors for access-related adverse events (AEs) of the preclose technique in thoracic endovascular aortic repair (TEVAR). MATERIALS AND METHODS: Ninety-one patients with Stanford type B aortic dissection who underwent the preclose technique in TEVAR between January 2013 and December 2021 were included. According to the occurrence of access-related AEs, the patients were divided into 2 groups: those with AE and those without AE. Age, sex, combined diseases, body mass index, skin depth, femoral artery diameter, access calcification, iliofemoral artery tortuosity, and sheath size were recorded for risk factor analysis. The sheath-to-femoral artery ratio (SFAR), the ratio of the femoral artery inner diameter (in millimeters) to the sheath's outer diameter (in millimeters), was also included in the analysis. RESULTS: SFAR was identified as an independent risk factor for AEs using multivariable logistic analysis (odds ratio, 251.748; 95% CI, 7.004-9,048.534; P = .002). The cutoff value of SFAR was 0.85 and was related to a higher incidence of access-related AEs (5.2% vs 33.3%, P = .001), especially to a higher stenosis rate (0.0% vs 21.2%, P = .001). CONCLUSIONS: SFAR is an independent risk factor for access-related AEs of preclose in TEVAR with a cutoff value of 0.85. SFAR could be a new criterion for preoperative access evaluation in high-risk patients that may allow the detection and treatment of access-related AEs at the early stage.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Endovascular Aneurysm Repair , Tomography, X-Ray Computed , Treatment Outcome , Risk Factors , Aortic Dissection/diagnostic imaging , Aortic Dissection/surgery , Endovascular Procedures/adverse effects , Endovascular Procedures/methods , Retrospective Studies , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/etiology , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...