Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Physiol Meas ; 43(10)2022 10 31.
Article in English | MEDLINE | ID: mdl-36336789

ABSTRACT

Objective. The ECG is a standard diagnostic tool for identifying many arrhythmias. Accurate diagnosis and early intervention for arrhythmias are of great significance to the prevention and treatment of cardiovascular disease. Our objective is to develop an algorithm that can automatically identify 30 arrhythmias by using varying-dimensional ECG signals.Approach. In this paper, we firstly proposed a novel multi-scale 2D CNN that can effectively capture pathological information from small-scale to large-scale from ECG signals to identify 30 arrhythmias from 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead ECGs. Secondly, we explored the effects of varying convolution kernels sizes and branch subnetworks on the model's performance for each arrhythmia. Thirdly, we introduced the weighted focal loss to alleviate the positive-negative class imbalance problem in the multi-label arrhythmias classification. Fourthly, we explored the utility of reduced-lead ECGs in detecting arrhythmias by comparing the performances of models on varying-dimensional ECGs.Main results. As a follow-up entry after the PhysioNet/Computing in Cardiology Challenge (2021), our proposed approach achieved the official test scores of 0.52, 0.47, 0.53, 0.51, and 0.50 for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead ECGs on the hidden test set (comparable to that of 6th, 11th, 4th, 5th, and 7th out of 39 teams in the Challenge).Significance. A multi-scale framework capable of detecting 30 arrhythmias from varying-dimensional ECGs was proposed in our work. We preliminarily verified that the multi-scale perception fields may be necessary to capture more comprehensive pathological information for arrhythmias detection. Besides, we also verified that the weighted focal loss may alleviate the positive-negative class imbalance and improve the model's generalization performance on the cross-dataset. In addition, we observed that some reduced-lead models, such as the 4-lead and 3-lead models, can even achieve performance that is almost comparable to that of the 12-lead model. The excellent performance of our proposed framework demonstrates its great potential in detecting a wide range of arrhythmias.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Humans , Electrocardiography/methods , Arrhythmias, Cardiac/diagnosis , Algorithms
2.
Nature ; 575(7784): 618-621, 2019 11.
Article in English | MEDLINE | ID: mdl-31776491

ABSTRACT

All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun1-4. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star-black-hole binaries5,6. When the black hole is not accreting gas, it can be found through radial-velocity measurements of the motion of the companion star. Here we report radial-velocity measurements taken over two years of the Galactic B-type star, LB-1. We find that the motion of the B star and an accompanying Hα emission line require the presence of a dark companion with a mass of [Formula: see text] solar masses, which can only be a black hole. The long orbital period of 78.9 days shows that this is a wide binary system. Gravitational-wave experiments have detected black holes of similar mass, but the formation of such massive ones in a high-metallicity environment would be extremely challenging within current stellar evolution theories.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(4): 1099-102, 2015 Apr.
Article in Japanese | MEDLINE | ID: mdl-26197609

ABSTRACT

The focal ratio degradation (FRD) of optical fiber is one of major sources causing light loss in multi-fiber astronomical instruments. Meanwhile, the sky subtraction is crucial to multi-fiber spectra reduction, especially for the objects which are as faint as the sky background, not to mention for those even fainter ones. To improve the accuracy of sky subtraction, it is necessary to normalize the throughput among object fibers and sky sampling fibers. The rotation and twist during mounting and rotating could change the FRD of individual fibers, which means the variation of the transmission throughput among fibers. We investigate such throughput variation among LAMOST fibers and its correlation with the intensity of sky emission lines on all wavelength coverage in this paper. On the basis of this work, we present an approach to correcting the varied fiber throughput by measuring the intensity of the sky emission lines as the secondary throughput correction. This approach has been applied to LAMOST 2D Pipeline.

SELECTION OF CITATIONS
SEARCH DETAIL
...