Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 244: 114826, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36242990

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) is the enzyme that catalyzes a rate-determining step during the de novo synthesis of uridine, an important source of cellular pyrimidine nucleotides. Ability to modulate the activity of this enzyme may be used to control diseases associated with rapid, out-of-control cell growth in oncology, immunology, and virology. Emvododstat (PTC299) is a tetrahydro-ß-carboline DHODH inhibitor discovered through the GEMS technology (Gene Expression Modulation by Small-Molecules). Described in this paper is the lead optimization campaign that culminated in the discovery of this highly potent DHODH inhibitor.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/pharmacology , Carbamates
2.
Bioorg Med Chem Lett ; 76: 128989, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36150638

ABSTRACT

Using small molecules to induce readthrough of premature termination codons is a promising therapeutic approach to treating genetic diseases and cancers caused by nonsense mutations, as evidenced by the widespread use of ataluren to treat nonsense mutation Duchene muscular dystrophy. Herein we describe a series of novel guanidino quinazoline and pyrimidine scaffolds that induce readthrough in both HDQ-P1 mammary carcinoma cells and mdx myotubes. Linkage of basic, tertiary amines with aliphatic, hydrophobic substituents to the terminal guanidine nitrogen of these scaffolds led to significant potency increases. Further potency gains were achieved by flanking the pyrimidine ring with hydrophobic substituents, inducing readthrough at concentrations as low as 120 nM and demonstrating the potential of these compounds to be used either in combination with ataluren or as stand-alone therapeutics.


Subject(s)
Codon, Nonsense , Quinazolines , Quinazolines/pharmacology , Pyrimidines/pharmacology , Guanidines , Nitrogen , Amines
3.
Carbohydr Res ; 495: 108058, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32658832

ABSTRACT

G418 is currently the most potent and active aminoglycoside to promote readthrough of eukaryotic nonsense mutations. However, owing to its toxicity G418 cannot be used in vivo to study readthrough activity A robust and scalable method for selective derivatization of G418 was developed to study the biological activity and toxicity of a series of analogs. Despite our synthetic efforts, an improvement in readthrough potency was not achieved. We discovered several analogs that demonstrated reduced zebra fish hair cell toxicity (a surrogate for ototoxicity), but this reduction in cellular toxicity did not translate to reduced in vivo toxicity in rats.


Subject(s)
Aminoglycosides/pharmacology , Gentamicins/pharmacology , Hair/drug effects , Aminoglycosides/chemical synthesis , Aminoglycosides/chemistry , Animals , Gentamicins/chemistry , Molecular Conformation , Rats , Zebrafish
4.
Oncogene ; 38(10): 1702-1716, 2019 03.
Article in English | MEDLINE | ID: mdl-30348991

ABSTRACT

Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor, representing 20% of newly diagnosed childhood central nervous system malignancies. Although advances in multimodal therapy yielded a 5-year survivorship of 80%, MB still accounts for the leading cause of childhood cancer mortality. In this work, we describe the epigenetic regulator BMI1 as a novel therapeutic target for the treatment of recurrent human Group 3 MB, a childhood brain tumor for which there is virtually no treatment option beyond palliation. Current clinical trials for recurrent MB patients based on genomic profiles of primary, treatment-naive tumors will provide limited clinical benefit since recurrent metastatic MBs are highly genetically divergent from their primary tumor. Using a small molecule inhibitor against BMI1, PTC-028, we were able to demonstrate complete ablation of self-renewal of MB stem cells in vitro. When administered to mice xenografted with patient tumors, we observed significant reduction in tumor burden in both local and metastatic compartments and subsequent increased survival, without neurotoxicity. Strikingly, serial in vivo re-transplantation assays demonstrated a marked reduction in tumor initiation ability of recurrent MB cells upon re-transplantation of PTC-028-treated cells into secondary recipient mouse brains. As Group 3 MB is often metastatic and uniformly fatal at recurrence, with no current or planned trials of targeted therapy, an efficacious targeted agent would be rapidly transitioned to clinical trials.


Subject(s)
Cerebellar Neoplasms/drug therapy , Medulloblastoma/drug therapy , Neoplastic Stem Cells/drug effects , Polycomb Repressive Complex 1/antagonists & inhibitors , Small Molecule Libraries/administration & dosage , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Child , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Small Molecule Libraries/pharmacology , Treatment Outcome , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
5.
PLoS One ; 13(10): e0206158, 2018.
Article in English | MEDLINE | ID: mdl-30359426

ABSTRACT

Nonsense mutations, resulting in a premature stop codon in the open reading frame of mRNAs are responsible for thousands of inherited diseases. Readthrough of premature stop codons by small molecule drugs has emerged as a promising therapeutic approach to treat disorders resulting from premature termination of translation. The aminoglycoside antibiotics are a class of molecule known to promote readthrough at premature termination codons. Gentamicin consists of a mixture of major and minor aminoglycoside components. Here, we investigated the readthrough activities of the individual components and show that each of the four major gentamicin complex components representing 92-99% of the complex each had similar potency and activity to that of the complex itself. In contrast, a minor component (gentamicin X2) was found to be the most potent and active readthrough component in the gentamicin complex. The known oto- and nephrotoxicity associated with aminoglycosides preclude long-term use as readthrough agents. Thus, we evaluated the components of the gentamicin complex as well as the so-called "designer" aminoglycoside, NB124, for in vitro and in vivo safety. In cells, we observed that gentamicin X2 had a safety/readthrough ratio (cytotoxicity/readthrough potency) superior to that of gentamicin, G418 or NB124. In rodents, we observed that gentamicin X2 showed a safety profile that was superior to G418 overall including reduced nephrotoxicity. These results support further investigation of gentamicin X2 as a therapeutic readthrough agent.


Subject(s)
Codon, Nonsense/chemical synthesis , Genetic Diseases, Inborn/drug therapy , Gentamicins/pharmacology , Protein Synthesis Inhibitors/pharmacology , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Animals , Antibiotics, Antineoplastic/pharmacology , Cells, Cultured , Codon, Terminator/chemical synthesis , Embryo, Nonmammalian , Gentamicins/chemistry , Gentamicins/therapeutic use , Humans , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Male , Open Reading Frames/drug effects , Open Reading Frames/genetics , Protein Synthesis Inhibitors/therapeutic use , Rats , Rats, Sprague-Dawley , Zebrafish/embryology
6.
Mol Cancer Ther ; 17(1): 39-49, 2018 01.
Article in English | MEDLINE | ID: mdl-29158468

ABSTRACT

BMI-1, also known as a stem cell factor, is frequently upregulated in several malignancies. Elevated expression of BMI-1 correlates with poor prognosis and is therefore considered a viable therapeutic target in a number of malignancies including ovarian cancer. Realizing the immense pathologic significance of BMI-1, small-molecule inhibitors against BMI-1 are recently being developed. In this study, we functionally characterize PTC-028, an orally bioavailable compound that decreases BMI-1 levels by posttranslational modification. We report that PTC-028 treatment selectively inhibits cancer cells in clonal growth and viability assays, whereas normal cells remain unaffected. Mechanistically, hyperphosphorylation-mediated depletion of cellular BMI-1 by PTC-028 coupled with a concurrent temporal decrease in ATP and a compromised mitochondrial redox balance potentiates caspase-dependent apoptosis. In vivo, orally administered PTC-028, as a single agent, exhibits significant antitumor activity comparable with the standard cisplatin/paclitaxel therapy in an orthotopic mouse model of ovarian cancer. Thus, PTC-028 has the potential to be used as an effective therapeutic agent in patients with epithelial ovarian cancer, where treatment options are limited. Mol Cancer Ther; 17(1); 39-49. ©2017 AACR.


Subject(s)
Benzimidazoles/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Polycomb Repressive Complex 1/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrazines/pharmacology , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Xenograft Model Antitumor Assays
7.
J Org Chem ; 82(11): 5881-5889, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28493695

ABSTRACT

A method for the preparation of 1-(N-ribofuranosyl)-6-imino-1,6-dihydropyrimidin-4-amines 3 or 4-(N-ribofuranosyl)-6-aminopyrimidines 4 via glycosylation of 4-aminopyrimidines 2 or 5 is described. Silylated 4-aminopyrimidines 2 or 5 upon ribosylation with 1 provide products 3. When intermediates 3 contain a strongly electron-withdrawing group, such as C(4)-Cl or C(5)-NO2, they rearrange to products 4 in the presence of aqueous ammonia. A mechanism is proposed that involves a ring-opening/ring-closing (Dimroth) rearrangement.

8.
RNA ; 23(4): 567-577, 2017 04.
Article in English | MEDLINE | ID: mdl-28096517

ABSTRACT

Nonsense mutations resulting in a premature stop codon in an open reading frame occur in critical tumor suppressor genes in a large number of the most common forms of cancers and are known to cause or contribute to the progression of disease. Low molecular weight compounds that induce readthrough of nonsense mutations offer a new means of treating patients with genetic disorders or cancers resulting from nonsense mutations. We have identified the nucleoside analog clitocine as a potent and efficacious suppressor of nonsense mutations. We determined that incorporation of clitocine into RNA during transcription is a prerequisite for its readthrough activity; the presence of clitocine in the third position of a premature stop codon directly induces readthrough. We demonstrate that clitocine can induce the production of p53 protein in cells harboring p53 nonsense-mutated alleles. In these cells, clitocine restored production of full-length and functional p53 as evidenced by induced transcriptional activation of downstream p53 target genes, progression of cells into apoptosis, and impeded growth of nonsense-containing human ovarian cancer tumors in xenograft tumor models. Thus, clitocine induces readthrough of nonsense mutations by a previously undescribed mechanism and represents a novel therapeutic modality to treat cancers and genetic diseases caused by nonsense mutations.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Biomimetic Materials/pharmacology , Codon, Nonsense/drug effects , Furans/pharmacology , Nucleosides/pharmacology , Ovarian Neoplasms/drug therapy , Pyrimidine Nucleosides/pharmacology , Tumor Suppressor Protein p53/agonists , Animals , Antimetabolites, Antineoplastic/chemical synthesis , Antimetabolites, Antineoplastic/metabolism , Apoptosis/drug effects , Biomimetic Materials/chemical synthesis , Biomimetic Materials/metabolism , Cell Line, Tumor , Female , Furans/chemical synthesis , Furans/metabolism , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Mice , Mice, Nude , Nucleosides/chemical synthesis , Nucleosides/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Biosynthesis , Pyrimidine Nucleosides/chemical synthesis , Pyrimidine Nucleosides/metabolism , Signal Transduction , Transcriptional Activation , Tumor Burden/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
9.
Nat Med ; 20(1): 29-36, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24292392

ABSTRACT

Tumor recurrence following treatment remains a major clinical challenge. Evidence from xenograft models and human trials indicates selective enrichment of cancer-initiating cells (CICs) in tumors that survive therapy. Together with recent reports showing that CIC gene signatures influence patient survival, these studies predict that targeting self-renewal, the key 'stemness' property unique to CICs, may represent a new paradigm in cancer therapy. Here we demonstrate that tumor formation and, more specifically, human colorectal CIC function are dependent on the canonical self-renewal regulator BMI-1. Downregulation of BMI-1 inhibits the ability of colorectal CICs to self-renew, resulting in the abrogation of their tumorigenic potential. Treatment of primary colorectal cancer xenografts with a small-molecule BMI-1 inhibitor resulted in colorectal CIC loss with long-term and irreversible impairment of tumor growth. Targeting the BMI-1-related self-renewal machinery provides the basis for a new therapeutic approach in the treatment of colorectal cancer.


Subject(s)
Colorectal Neoplasms/drug therapy , Heterocyclic Compounds, 2-Ring/pharmacology , Neoplasm Recurrence, Local/metabolism , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/metabolism , Thiazoles/pharmacology , Animals , Blotting, Western , Bromodeoxyuridine , Cell Line, Tumor , Flow Cytometry , Genetic Vectors/genetics , Heterocyclic Compounds, 2-Ring/therapeutic use , Humans , Luciferases , Mice, Inbred NOD , Mice, SCID , Polycomb Repressive Complex 1/antagonists & inhibitors , RNA Interference , RNA, Small Interfering/genetics , Thiazoles/therapeutic use
10.
Tetrahedron ; 65(33): 6535-6548, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-22180670

ABSTRACT

An asymmetric synthesis of the ABCD ring system of daphnilactone B is described. The synthesis features a tandem, double intramolecular, [4+2]/[3+2] cycloaddition of a highly functionalized, enantiomerically enriched nitroalkene to generate a pentacyclic nitroso acetal. The cycloaddition establishes six contiguous stereogenic centers including the critical CD ring junction that bears two quaternary stereogenic centers. Hydrogenolysis of the nitroso acetal followed by amide reduction and cyclization provided the AB rings. The methyl substituent on the A ring was installed in the correct configuration via hydrogenation of an exocyclic olefin in the final step.

11.
Heterocycles ; 76(1): 143, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-20151037

ABSTRACT

An asymmetric synthesis of the ABCD ring system of daphnilactone B is described. The synthesis features a tandem, double intramolecular, [4+2]/[3+2] cycloaddition of a highly functionalized, enantiomerically enriched nitroalkene to generate a pentacyclic nitroso acetal. The cycloaddition establishes six contiguous stereogenic centers including the critical CD ring junction that bears two quaternary stereogenic centers. Hydrogenolysis of the nitroso acetal followed by amide reduction and cyclization provided the AB rings. The methyl substituent on the A ring was installed in the correct configuration via hydrogenation of an exocyclic olefin in the final step.

12.
J Org Chem ; 71(2): 593-605, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16408969

ABSTRACT

[reaction: see text] Two model studies in support of a total synthesis of the complex polycyclic alkaloid daphnilactone B have been completed. The objectives of the models studies were to demonstrate the use of a tandem double-intramolecular [4+2]/[3+2] nitroalkene cycloaddition for the stereocontrolled construction of four of the rings in the core of the natural product. The first model study established the ability to create a pyrrolidine ring corresponding to ring A of daphnilactone B through a modification of the dipolarophile and subsequent functional group manipulations. The second model study required the modification of the dienophile in the [4+2] cycloaddition to accommodate the formation of a piperidine ring (ring B of daphnilactone B). Nitroalkene 26 containing a diene as the dienophile served well in the tandem cycloaddition to afford the nitroso acetal 38a in 77% yield. Subsequent functional group manipulations allowed for the high-yielding conversion to the core of daphnilactone B.


Subject(s)
Alkaloids/chemistry , Alkaloids/chemical synthesis , Alkenes/chemistry , Alkenes/chemical synthesis , Lactones , Piperidines/chemistry , Piperidines/chemical synthesis , Models, Molecular , Molecular Conformation
13.
Org Lett ; 7(25): 5617-20, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16321005

ABSTRACT

[chemical reaction: see text]. Nitroalkene (E)-1 has been synthesized to test the feasibility of an intramolecular [4 + 2] cycloaddition in a planned synthesis of daphnilactone B. This nitro olefin contains two unique structural features, a nitromethylene lactone and a pendant diene, that combine under the action of SnCl4 in a highly selective fashion to afford nitronates 2a and 2b. These products represent the correct relationship for the vicinal quaternary stereogenic centers in the core of daphnilactone B.


Subject(s)
Alkenes/chemical synthesis , Nitro Compounds/chemical synthesis , Alkenes/chemistry , Crystallography, X-Ray , Cyclization , Molecular Conformation , Molecular Structure , Nitro Compounds/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...