Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38004591

ABSTRACT

The aim of this work is to highlight the influence of UV light on the hydrolysis reaction of nifedipine (NIF) in the presence of alkaline solutions. In this context, the photodegradation of NIF in the absence of alkaline solutions caused (a) a change in the ratio between the absorbances of three bands in the UV-VIS spectra localized at 224-240 nm, 272-276 nm and 310-340 nm, assigned to the electronic transitions of -COOCH3 groups, -NO2 groups and a heterocycle with six atoms; (b) a red-shift of the photoluminescence (PL) band from 458 nm to 477 nm, simultaneous with an increase in its intensity; (c) a decrease in the ratio of the Raman line intensities, which peaked at 1224 cm-1 and 1649 cm-1, associated with the vibrational modes of -C-C-O in the ester group and C=C stretching; and (d) a decrease in the ratio between the absorbances of the IR bands, which peaked at 1493 cm-1 and 1223 cm-1, associated with the vibrational modes of the -NO2 group and C-N stretching. These changes were explained considering the NIF photodegradation reaction, which leads to the generation of the compound 4-(2-nitrosophenyl)-2.6-dimethyl-3.5-dimethoxy carbonyl pyridine. The interaction of NIF with NaOH in the absence of UV light was demonstrated to induce changes in the vibrational mode of the -C-C-O bond in the ester group. The photodegradation of NIF after its reaction with NaOH induces significant changes highlighted in its (a) UV-VIS spectra, by the shift of the absorption band at 238 nm; (b) PL spectra, by the supraunitary value of the ratio between the emission band intensities at 394-396 nm and 450 nm; (c) Raman spectra, by the change in the ratio between the intensities of the lines that peaked at 1224 cm-1 and 1649 cm-1 from 0.61 to 0.49; and (d) FTIR spectra, by the lowered absorbance of the IR band at 1493 cm-1 assigned to the vibrational mode of the -NO2 group as a result of the generation of the nitroso compound. These changes were explained considering the hydrolysis reaction products of NIF, as the nitroso compound is converted to a lactam-type compound. The photodegradation reaction rate constants of NIF and NIF after interaction with NaOH were also reported. The decrease in thermal stability of NIF samples after interaction with NaOH, as well as of NIF after exposure to UV light compared to NIF prior to exposure to UV light, was demonstrated by thermogravimetry, and the key fragments were confirmed by mass spectrometry.

2.
Molecules ; 28(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37836801

ABSTRACT

In this work, applications of nanohybrid composites based on titanium dioxide (TiO2) with anatase crystallin phase and single-walled carbon nanohorns (SWCNHs) as promising catalysts for the photodegradation of amoxicillin (AMOX) are reported. In this order, TiO2/SWCNH composites were prepared by the solid-state interaction of the two chemical compounds. The increase in the SWCNH concentration in the TiO2/SWCNH composite mass, from 1 wt.% to 5 wt.% and 10 wt.% induces (i) a change in the relative intensity ratio of the Raman lines located at 145 and 1595 cm-1, which are attributed to the Eg(1) vibrational mode of TiO2 and the graphitic structure of SWCNHs; and (ii) a gradual increase in the IR band absorbance at 1735 cm-1 because of the formation of new carboxylic groups on the SWCNHs' surface. The best photocatalytic properties were obtained for the TiO2/SWCNH composite with a SWCNH concentration of 5 wt.%, when approx. 92.4% of AMOX removal was achieved after 90 min of UV irradiation. The TiO2/SWCNH composite is a more efficient catalyst in AMOX photodegradation than TiO2 as a consequence of the SWCNHs' presence, which acts as a capture agent for the photogenerated electrons of TiO2 hindering the electron-hole recombination. The high stability of the TiO2/SWCNH composite with a SWCNH concentration of 5 wt.% is proved by the reusing of the catalyst in six photodegradation cycles of the 98.5 µM AMOX solution, when the efficiency decreases from 92.4% up to 78%.

3.
Molecules ; 28(11)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37299022

ABSTRACT

The aim of this work is to highlight the influence of blends based on TiO2 nanoparticles and reduced graphene oxide (RGO) on the photodegradation of acetaminophen (AC). To this end, the catalysts of TiO2/RGO blends with RGO sheet concentrations equal 5, 10, and 20 wt. % were prepared by the solid-state interaction of the two constituents. The preferential adsorption of TiO2 particles onto the RGO sheets' surfaces via the water molecules on the TiO2 particle surface was demonstrated by FTIR spectroscopy. This adsorption process induced an increase in the disordered state of the RGO sheets in the presence of the TiO2 particles, as highlighted by Raman scattering and scanning electron microscopy (SEM). The novelty of this work lies in the demonstration that TiO2/RGO mixtures, obtained by the solid-phase interaction of the two constituents, allow an acetaminophen removal of up to 95.18% after 100 min of UV irradiation. This TiO2/RGO catalyst induced a higher photodegradation efficiency of AC than TiO2 due to the presence of RGO sheets, which acted as a capture agent for the photogenerated electrons of TiO2, hindering the electron-hole recombination. The reaction kinetics of AC aqueous solutions containing TiO2/RGO blends followed a complex first-order kinetic model. Another novelty of this work is the demonstration of the ability of PVC membranes modified with Au nanoparticles to act both as filters for the removal of TiO2/RGO blends after AC photodegradation and as potential SERS supports, which illustrate the vibrational properties of the reused catalyst. The reuse of the TiO2/RGO blends after the first cycle of AC photodegradation indicated their suitable stability during the five cycles of pharmaceutical compound photodegradation.


Subject(s)
Graphite , Metal Nanoparticles , Acetaminophen , Oxides/chemistry , Gold , Graphite/chemistry , Titanium/chemistry , Water
4.
Polymers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299346

ABSTRACT

The purpose of this work was to obtain an elastic composite material from polymer powders (polyurethane and polypropylene) with the addition of BaTiO3 until 35% with tailored dielectric and piezoelectric features. The filament extruded from the composite material was very elastic but had good features to be used for 3D printing applications. It was technically demonstrated that the 3D thermal deposition of composite filament with 35% BaTiO3 was a convenient process for achieving tailored architectures to be used as devices with functionality as piezoelectric sensors. Finally, the functionality of such 3D printable flexible piezoelectric devices with energy harvesting features was demonstrated, which can be used in various biomedical devices (as wearable electronics or intelligent prosthesis), generating enough energy to make such devices completely autonomous only by exploiting body movements at variable low frequencies.

5.
Eur Phys J E Soft Matter ; 46(4): 26, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37029885

ABSTRACT

We studied here the influence of Li+ ions on the benzene rings of nematic mixture E7, which is electrochemically adsorbed onto gold electrode surface, to highlight the ability of this mixture for the applications in the field of the rechargeable Li+-ion batteries. Raman spectra support the changes observed in electrochemical analyses while contact angle measurements show that wetting properties of E7 layer were modified after deposition of this mixture onto gold support and the doping with Li+ ions. Contact angle of acetonitrile drops and Raman spectrum of the film of E7 nematic mixture are two main properties which show deep modifications into the film by electro chemical deposition.

6.
Materials (Basel) ; 16(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36837374

ABSTRACT

This article's objective is the synthesis of new composites based on thermoplastic polyurethane (TPU) and TiO2 nanowires (NWs) as free-standing films, highlighting their structural and optical properties. The free-standing TPU-TiO2 NW films were prepared by a wet chemical method accompanied by a thermal treatment at 100 °C for 1 h, followed by air-drying for 2 h. X-ray diffraction (XRD) studies indicated that the starting commercial TiO2 NW sample contains TiO2 tetragonal anatase (A), cubic Ti0.91O (C), and orthorhombic Ti2O3 (OR), as well as monoclinic H2Ti3O7 (M). In the presence of TPU, an increase in the ratio between the intensities of the diffraction peaks at 43.4° and 48° belonging to the C and A phases of titanium dioxide, respectively, is reported. The increase in the intensity of the peak at 43.4° is explained to be a consequence of the interaction of TiO2 NWs with PTU, which occurs when the formation of suboxides takes place. The variation in the ratio of the absorbance of the IR bands peaked at 765-771 cm-1 and 3304-3315 cm-1 from 4.68 to 4.21 and 3.83 for TPU and the TPU-TiO2 NW composites, respectively, with TiO2 NW concentration equal to 2 wt.% and 17 wt.%, indicated a decrease in the higher-order aggregates of TPU with a simultaneous increase in the hydrogen bonds established between the amide groups of TPU and the oxygen atoms of TiO2 NWs. The decrease in the ratio of the intensity of the Raman lines peaked at 658 cm-1 and 635 cm-1, which were assigned to the vibrational modes Eg in TiO2 A and Eg in H2Ti3O7 (ITiO2-A/IH2Ti3O7), respectively, from 3.45 in TiO2 NWs to 0.94-0.96 in the TPU-TiO2 NW composites, which indicates that the adsorption of TPU onto TiO2 NWs involves an exchange reaction of TPU in the presence of TiO2 NWs, followed by the formation of new hydrogen bonds between the -NH- of the amide group and the oxygen atoms of TixO2x-mn, Ti2O3, and Ti0.91O. Photoluminescence (PL) studies highlighted a gradual decrease in the intensity of the TPU emission band, which is situated in the spectral range 380-650 nm, in the presence of TiO2 NW. After increasing the TiO2 NW concentration in the TPU-TiO2 NW composite mass from 0 wt.% to 2 wt.% and 17 wt.%, respectively, a change in the binding angle of the TPU onto the TiO2 NW surface from 12.6° to 32° and 45.9°, respectively, took place.

7.
Polymers (Basel) ; 16(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38201718

ABSTRACT

Recent progress concerning the development of counter electrode material (CE) from the dye-sensitized solar cells (DSSCs) and the electrode material (EM) within supercapacitors is reviewed. From composites based on carbon nanotubes (CNTs) and conducting polymers (CPs) to their biggest competitor, namely composites based on graphene or graphene derivate (GD) and CPs, there are many methods of synthesis that influence the morphology and the functionalization inside the composite, making them valuable candidates for EM both inside DSSCs and in supercapacitors devices. From the combination of CPs with carbon-based materials, such as CNT and graphene or GD, the perfect network is created, and so the charge transfer takes place faster and more easily. Inside composites, between the functional groups of the components, different functionalizations are formed, namely covalent or non-covalent, which further provide the so-called synergic effect. Inside CPs/CNTs, CNTs could play the role of template but could also be wrapped in a CP film due to π-π coupling enhancing the composite conductivity. Active in regenerating the redox couple I-/I3-, the weakly bound electrons play a key role inside CPs/GD composites.

8.
Pharmaceutics ; 14(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36365237

ABSTRACT

In this paper, new results on the degradation of losartan potassium (LP, (1)), in the absence and presence of excipients, which was induced by UV light, the acid character of phosphate buffer solution (PBS) and alkaline medium, respectively, are reported through correlated studies of FTIR spectroscopy, photoluminescence and dielectric spectroscopy. The photoluminescence (PL) spectra of LP and the drug marked under the name Lorista (LO) are characterized by intense emission bands, peaking at 378 nm and 380 nm, respectively, accompanied by low intensity bands with a maximum at ~450-460 nm. Photodegradation of LO in a solid state is evidenced by a decrease in the intensity of the PL band at 380 nm, a variation that originates both in the adsorption of water vapors from the air and in the interaction of LP with excipients such as cornstarch, silicon dioxide and cellulose. The LP-water interaction is described, taking into account the main electrical parameters, i.e., complex dielectric permittivity and electrical conductivity. Photodegradation of LP and LO also induces an increase in the intensity of the emission band, at ~450-460 nm. The influence of acid and alkaline medium on the LO degradation is analyzed using phosphate buffer (PBS) and NaOH solutions, respectively. In both cases, a decrease in the intensity of the PL band, at 380 nm, is reported. The intensity diminution of the PL spectra of NaOH-reacted LP and LO is the result of the formation of the photodegradation product N-methanolamide-{[2'-(1H-tetrazol-5-yl)(1,1'-biphenyl)-4-yl]methyl} (2). This compound was proven by the studies of FTIR spectroscopy achieved on LP and NaOH-reacted LP. The appearance of the IR band at 1740 cm-1 and the increase in the absorbance in the IR band at 1423 cm-1 indicate that the photodegradation product (2) contains the C=O and C-OH functional groups.

9.
Polymers (Basel) ; 14(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36365473

ABSTRACT

In this work, new information concerning the optical properties of black phosphorus (BP) sheets chemically/electrochemically functionalized with diphenyl amine (DPA) and its macromolecular compound (poly(diphenylamine) (PDPA)) in the absence/presence of phosphotungstic acid (PTA) is reported. Raman scattering and FTIR spectroscopy studies indicate that the interaction of BP with PTA leads to the elimination of the PxOy layer onto the surface of the BP sheets. In the case of the chemical interaction of BP with DPA, the reaction product corresponds to DPA chemically functionalized BP sheets having an imino-phosphorane (IP) structure. The electrochemical oxidation of BP sheets chemically functionalized with DPA in the presence of PTA leads to an increase in the weight of P-N bonds as a consequence of the generation of PDPA doped with the PTA heteropolyanions, as shown by FTIR spectroscopy and Raman scattering. This process is evidenced by a shift of the Raman line from 362 cm-1 to 378 cm-1, assigned to the A1g mode. This change was explained by taking into account the compression of the layers containing P atoms, which is induced by PDPA macromolecular chains. The decrease in the intensity of the PL spectra of DPA as well as PDPA, in the presence of BP, indicates that BP acts as a PL quenching agent for these compounds. A preferential orientation of the PDPA doped with the PTA heteropolyanions on the surface of BP sheets is highlighted by the variation of the binding angle of the PDPA on the surface of BP sheets from 44.7° to 39.9°.

10.
J Clin Med ; 11(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36233713

ABSTRACT

BACKGROUND: Alzheimer's disease has a significant epidemiological and socioeconomic impact, and, unfortunately, the extensive research focused on potential curative therapies has not yet proven to be successful. However, in recent years, important steps have been made in the development and functionalization of nanoporous alumina membranes, which might be of great interest for medical use, including the treatment of neurodegenerative diseases. In this context, the aim of this article is to present the synthesis and biocompatibility testing of a special filtrating nano-membrane, which is planned to be used in an experimental device for Alzheimer's disease treatment. METHODS: Firstly, the alumina nanoporous membrane was synthesized via the two-step anodizing process in oxalic acid-based electrolytes and functionalized via the atomic layer deposition technique. Subsequently, quality control tests (spectrophotometry and potential measurements), toxicity, and biocompatibility tests (cell viability assays) were conducted. RESULTS: The proposed alumina nanoporous membrane proved to be efficient for amyloid-beta filtration according to the permeability studies conducted for 72 h. The proposed membrane has proven to be fully compatible with the tested cell cultures. CONCLUSIONS: The proposed alumina nanoporous membrane model is safe and could be incorporated into implantable devices for further in vivo experiments and might be an efficient therapeutic approach for Alzheimer's disease.

11.
Sci Rep ; 12(1): 9515, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680962

ABSTRACT

In this work, new optical evidences concerning the changes induced of the UV light on pantoprazole sodium (PS), in solid state and as aqueous solution, are reported by UV-VIS spectroscopy, photoluminescence (PL), Raman scattering and FTIR spectroscopy. New evidences concerning the products of the PS photodegradation pathways are reported by the correlated studies of thermogravimetry and mass spectrometry. The influence of the excipients and alkaline medium on the PS photodegradation is also studied. New aspects regarding the chemical mechanism of the PS photodegradation in the presence of the water vapor and oxygen form air and the alkaline medium are shown. Our results confirm that the PS photodegradation induced of the water vapors and oxygen from air leads to the generation of 5-difluoromethoxy-3H-benzimidazole-2-thione sodium, 5-difluoromethoxy-3H-benzimidazole sodium, 2-thiol methyl-3, 4-dimethoxypyridine and 2-hydroxymethyl-3, 4-dimethoxypyridine, while in the alkaline medium, compounds of the type of the 2-oxymethyl-3,4-dimethoxypyridine sodium salts are resulted.


Subject(s)
Benzimidazoles , Sodium , Mass Spectrometry , Oxygen , Pantoprazole , Photolysis , Spectroscopy, Fourier Transform Infrared
12.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35455412

ABSTRACT

New aspects concerning the photodegradation (PD) of ampicillin are reported by photoluminescence (PL), Raman scattering and FTIR spectroscopy. The exposure of ampicillin in the absence (AM) and in the presence of the excipient (AMP) to UV light leads to an intensity diminution of the photoluminescence excitation (PLE) and photoluminescence (PL) spectra and the emergence of a new IR band at 3450 cm-1. The photoluminescence studies demonstrate that the AM PD is amplified in the presence of excipients and an alkaline medium. In this last case, the PD process of AM involves the emergence of new compounds, whose presence is highlighted by: (i) the emergence of the isosbestic point at 300 nm in the UV-VIS spectra; (ii) a change in the ratio between the absorbance of IR bands situated in the spectral ranges 1200-1660 and 3250-3450 cm-1; and (iii) a change in the ratio between the intensities of the Raman lines localized in the spectral ranges 1050-1800 and 2750-3100 cm-1. A chemical mechanism of the PD processes of AM in an alkaline medium is proposed.

13.
Int J Mol Sci ; 23(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35409337

ABSTRACT

The effect of sodium thiosulfate (ST) on the photodegradation of azathioprine (AZA) was analyzed by UV-VIS spectroscopy, photoluminescence (PL), FTIR spectroscopy, Raman scattering, X-ray photoelectron (XPS) spectroscopy, thermogravimetry (TG) and mass spectrometry (MS). The PL studies highlighted that as the ST concentration increased from 25 wt.% to 75 wt.% in the AZA:ST mixture, the emission band of AZA gradual downshifted to 553, 542 and 530 nm. The photodegradation process of AZA:ST induced: (i) the emergence of a new band in the 320-400 nm range in the UV-VIS spectra of AZA and (ii) a change in the intensity ratio of the photoluminescence excitation (PLE) bands in the 280-335 and 335-430 nm spectral ranges. These changes suggest the emergence of new compounds during the photo-oxidation reaction of AZA with ST. The invoked photodegradation compounds were confirmed by studies of the Raman scattering, the FTIR spectroscopy and XPS spectroscopy through: (i) the downshift of the IR band of AZA from 1336 cm-1 to 1331 cm-1, attributed to N-C-N deformation in the purine ring; (ii) the change in the intensity ratio of the Raman lines peaking at 1305 cm-1 and 1330 cm-1 from 3.45 to 4.57, as the weight of ST in the AZA:ST mixture mass increased; and (iii) the emergence of a new band in the XPS O1s spectrum peaking at 531 eV, which was associated with the C=O bond. Through correlated studies of TG-MS, the main key fragments of ST-reacted AZA are reported.


Subject(s)
Azathioprine , Spectrum Analysis, Raman , Photolysis , Spectroscopy, Fourier Transform Infrared , Thiosulfates
14.
Molecules ; 28(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36615329

ABSTRACT

In this article, we review recent progress concerning the development of sensorial platforms based on graphene derivatives and conducting polymers (CPs), alternatively deposited or co-deposited on the working electrode (usually a glassy carbon electrode; GCE) using a simple potentiostatic method (often cyclic voltammetry; CV), possibly followed by the deposition of metallic nanoparticles (NPs) on the electrode surface (ES). These materials have been successfully used to detect an extended range of biomolecules of clinical interest, such as uric acid (UA), dopamine (DA), ascorbic acid (AA), adenine, guanine, and others. The most common method is electrochemical synthesis. In the composites, which are often combined with metallic NPs, the interaction between the graphene derivatives-including graphene oxide (GO), reduced graphene oxide (RGO), or graphene quantum dots (GQDs)-and the CPs is usually governed by non-covalent functionalization through π-π interactions, hydrogen bonds, and van der Waals (VW) forces. The functionalization of GO, RGO, or GQDs with CPs has been shown to speed up electron transfer during the oxidation process, thus improving the electrochemical response of the resulting sensor. The oxidation mechanism behind the electrochemical response of the sensor seems to involve a partial charge transfer (CT) from the analytes to graphene derivatives, due to the overlapping of π orbitals.


Subject(s)
Graphite , Graphite/chemistry , Uric Acid , Polymers , Carbon/chemistry , Oxidation-Reduction , Electrodes , Ascorbic Acid , Electrochemical Techniques/methods
15.
Molecules ; 26(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885826

ABSTRACT

In this work, new results concerning the potential of mixtures based on nitrogen doped titanium dioxide (TiO2:N) and carbon nanotubes (CNTs) as possible catalyst candidates for the rhodamine B (RhB) UV photodegradation are reported. The RhB photodegradation was evaluated by UV-VIS absorption spectroscopy using samples of TiO2:N and CNTs of the type of single-walled carbon nanotubes (SWNTs), double-wall carbon nanotubes (DWNTs), multi-wall carbon nanotubes (MWNTs), and single-walled carbon nanotubes functionalized with carboxyl groups (SWNT-COOH) having various concentrations of CNTs. The best photocatalytic performance was obtained for sample containing TiO2:N and 2.5 wt.% SWNTs-COOH, when approx. 85% of dye removal was achieved after 300 min. of UV irradiation. The reaction kinetics of RhB aqueous solutions containing TiO2:N/CNT mixtures followed a complex first-order kinetic model. The TiO2:N/CNTs catalyst induced higher photodegradation efficiency of RhB than TiO2:N due to the presence of CNTs, which act as adsorbent and dispersing agent and capture the photogenerated electrons of TiO2:N hindering the electron-hole recombination.

16.
Polymers (Basel) ; 13(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34451312

ABSTRACT

This paper prepared composites under the free membranes form that are based on thermoplastic polymers of the type of polyurethane (TPU) and polyolefin (TPO), which are blended in the weight ratio of 2:1, and ceramic nanoparticles (CNs) such as BaSrTiO3 and SrTiO3. The structural, optical, and conductive properties of these new composite materials are reported. The X-ray diffraction studies highlight a cubic crystalline structure of these CNs. The main variations in the vibrational properties of the TPU:TPO blend induced by CNs consist of the following: (i) the increase in the intensity of the Raman line of 1616 cm-1; (ii) the down-shift of the IR band from 800 to 791 cm-1; (iii) the change of the ratio between the absorbance of IR bands localized in the spectral range 950-1200 cm-1; and (iv) the decrease in the absorbance of the IR band from 1221 cm-1. All these variations were correlated with a preferential adsorption of thermoplastic polymers on the CNs surface. A photoluminescence (PL) quenching process of thermoplastic polymers is demonstrated to occur in the presence of CNs. The anisotropic PL measurements have highlighted a change in the angle of the binding of the TPU:TPO blend, which varies from 23.7° to ≈49.3° and ≈53.4°, when the concentration of BaSrTiO3 and SrTiO3 CNs, respectively, is changed from 0 to 25 wt. %. Using dielectric spectroscopy, two mechanisms are invoked to take place in the case of the composites based on TPU:TPO blends and CNs, i.e., one regarding the type of the electrical conduction and another specifying the dielectric-dipolar relaxation processes.

17.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361025

ABSTRACT

In this work, synthesis and optical properties of a new composite based on poly(o-phenylenediamine) (POPD) fiber like structures, poly(vinylidene fluoride) (PVDF) spheres and double-walled carbon nanotubes (DWNTs) are reported. As increasing the PVDF weight in the mixture of the chemical polymerization reaction of o-phenylenediamine, the presence of the PVDF spheres onto the POPD fibers surface is highlighted by scanning electron microscopy (SEM). The down-shift of the Raman line from 1421 cm-1 to 1415 cm-1 proves the covalent functionalization of DWNTs with the POPD-PVDF blends. The changes in the absorbance of the IR bands peaked around 840, 881, 1240 and 1402 cm-1 indicate hindrance steric effects induced of DWNTs to the POPD fiber like structures and the PVDF spheres, as a consequence of the functionalization process of carbon nanotubes with macromolecular compounds. The presence of the PVDF spheres onto the POPD fiber like structures surface induces a POPD photoluminescence (PL) quenching process. An additional PL quenching process of the POPD-PVDF blends is reported to be induced in the presence of DWNTs. The studies of anisotropic PL highlight a change of the angle of the binding of the PVDF spheres onto the POPD fiber like structures surface from 50.2° to 38° when the carbon nanotubes concentration increases in the POPD-PVDF/DWNTs composites mass up to 2 wt.%.


Subject(s)
Dimethylformamide/chemistry , Nanotubes, Carbon/chemistry , Polyvinyls/chemistry , Anisotropy , Nanocomposites/chemistry , Spectrum Analysis, Raman
18.
Sci Rep ; 11(1): 15338, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321518

ABSTRACT

In this work, the photodegradation process of atorvastatin calcium (ATC) is reported as depending on: (1) the presence and the absence of excipients in the solid state; (2) the chemical interaction of ATC with phosphate buffer (PB) having pH equal to 7 and 8; and (3) hydrolysis reaction of ATC in the presence of aqueous solution of NaOH. The novelty of this work consists in the monitoring of the ATC photodegradation by photoluminescence (PL). The exposure of ATC in solid state to UV light induces the photo-oxygenation reactions in the presence of water vapors and oxygen from air. According to the X-ray photoelectron spectroscopic studies, we demonstrate that the photo-oxygenation reaction leads to photodegradation compounds having a high share of C=O bonds compared to ATC before exposure to UV light. Both in the presence of PB and NaOH, the photodegradation process of ATC is highlighted by a significant decrease in the intensity of the PL and photoluminescence excitation (PLE) spectra. According to PLE spectra, the exposure of ATC in the presence of NaOH to UV light leads to the appearance of a new band in the spectral range 340-370 nm, this belonging to the photodegradation products. Arguments concerning the chemical compounds, that resulted in this last case, are shown by Raman scattering and FTIR spectroscopy.

19.
Int J Mol Sci ; 22(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919943

ABSTRACT

Photodegradation of the aqueous solutions of acetylsalicylic acid, in the absence (ASA) and the presence of excipients (ASE), is demonstrated by the photoluminescence (PL). A shift of the PL bands from 342 and 338 nm to 358 and 361-397 nm for ASA and ASE in solid state and as aqueous solutions was reported. By exposure of the solution of ASA 0.3 M to UV light, a decrease in the PL band intensity was highlighted. This behavior was revealed for ASA in the presence of phosphate buffer (PB) having the pH equal to 6.4, 7, and 8 or by the interaction with NaOH 0.3 M. A different behavior was reported in the case of ASE. In the presence of PB, an increase in the intensity of the PL band of ASE simultaneously with a change of the ratio between the intensities of the bands at 361-364 and 394-397 nm was highlighted. The differences between PL spectra of ASA and ASE have their origin in the presence of salicylic acid (SAL). The interaction of ASE with NaOH induces a shift of the PL band at 405-407 nm. Arguments for the reaction of ASA with NaOH are shown by Raman scattering and FTIR spectroscopy.


Subject(s)
Aspirin/chemistry , Photolysis/radiation effects , Solutions/radiation effects , Water/chemistry , Aspirin/radiation effects , Cadmium Compounds/chemistry , Luminescence , Quantum Dots/chemistry , Spectrum Analysis, Raman , Ultraviolet Rays/adverse effects
20.
Polymers (Basel) ; 13(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672830

ABSTRACT

A new method to obtain poly(vinyl chloride) (PVC) spheres, which consists of an interaction between commercial PVC grains and hexyl ethyl cellulose and lauroyl peroxide at a temperature of 60 °C, is reported. The addition of the graphene oxide (GO) sheets dispersed in dimethylformamide to the reaction mixture leads to the generation of composites made of PVC spheres coated with GO sheets. Scanning electron microscopy studies have demonstrated that this method allows for the transformation of PVC grains with sizes between 75 and 227 µm into spheres with sizes varying from 0.7 to 3.5 µm when the GO concentration in the PVC/GO composite mass increases from 0.5 to 5 wt.%. Our studies of Raman scattering and FTIR spectroscopy highlight a series of changes that indicate the appearance of ClCH=CH-, CH2=CCl-, and/or -CH=CCl- units as a result of PVC partial dehydrogenation. New -COO- and C-OH bonds on the GO sheet surfaces are induced during the preparation of PVC spheres coated with GO sheets. A photoluminescence (PL) band with a maximum at 325 nm is reported to characterize the PVC spheres. A PVC PL quenching process is demonstrated to be induced by the increase in the concentration of the GO sheets in the PVC/GO composite mass. The perspectives regarding the use of this composite as a flame-retardant material are also reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...