Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cardiol ; 83(12A): 38H-43H, 1999 Jun 17.
Article in English | MEDLINE | ID: mdl-10750585

ABSTRACT

In vivo studies show that beta3-integrin-mediated focal adhesion formation (FAF) causes recruitment of nonreceptor tyrosine kinases to the cytoskeleton in pressure-overloaded myocardium. To define the mechanism of beta3-integrin-mediated signaling, we developed a cell culture model (adult feline cardiocytes embedded in a 3-dimensional matrix of native type 1 collagen, fibronectin, and vitronectin) wherein beta3-integrin-mediated focal adhesion kinase occurs. Focal adhesion kinase was analyzed immunocytochemically using confocal microscopy. Initial studies suggested that cardiocytes cultured in a 3-dimensional matrix formed focal adhesions consisting of both beta3-integrin and the muscle-specific isoform, beta1-integrin (beta1D). The focal adhesions were associated with focal adhesion kinase on both costameres and intercalated disks. To determine the cause of beta1D-integrin-mediated focal adhesion kinase in this model, time course studies were done. Beta3-integrin-mediated focal adhesion kinase occurred within 30 minutes after embedding cardiocytes and persisted for >24 hours, whereas beta1D-integrin-mediated focal adhesion kinase was present from the outset. Because confocal microscopy showed that laminin was present on the surface of freshly isolated cardiocytes, we hypothesized that this was causative of beta1D-integrin-mediated focal adhesion kinase. Freshly isolated cardiocytes washed with acidic medium (2 minutes, pH 3.0) to remove laminin and then embedded in a 3-dimensional matrix showed complete absence of beta1D-integrin-mediated focal adhesion kinase, but beta3-integrin-mediated focal adhesion kinase occurred with a time course similar to that seen in cultured, unwashed cardiocytes. Acid washing did not alter the binding ability of beta1D-integrin, because acid-washed cardiocytes in the presence of laminin showed beta1D-integrin-mediated focal adhesion kinase. Thus, cardiocytes embedded in a 3-dimensional matrix show beta3-integrin-mediated focal adhesion kinase and provide an in vitro model to study beta3-integrin-mediated signaling in response to hemodynamic cardiac loading.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion/physiology , Integrins/metabolism , Myocardium/metabolism , Platelet Membrane Glycoproteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Cats , Cells, Cultured , Collagen/pharmacology , Culture Media , Discoidin Domain Receptor 1 , Fibronectins/pharmacology , Fluorescent Antibody Technique , Integrin beta1/metabolism , Integrin beta3 , Microscopy, Confocal , Myocardium/cytology , Signal Transduction , Vitronectin/pharmacology
2.
Am J Physiol ; 274(6 Pt 2): H2188-202, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9841544

ABSTRACT

Diastolic dysfunction is an important cause of congestive heart failure; however, the basic mechanisms causing diastolic congestive heart failure are not fully understood, especially the role of the cardiac muscle cell, or cardiocyte, in this process. Before the role of the cardiocyte in this pathophysiology can be defined, methods for measuring cardiocyte constitutive properties must be developed and validated. Thus this study was designed to evaluate a new method to characterize cardiocyte constitutive properties, the gel stretch method. Cardiocytes were isolated enzymatically from normal feline hearts and embedded in a 2% agarose gel containing HEPES-Krebs buffer and laminin. This gel was cast in a shape that allowed it to be placed in a stretching device. The ends of the gel were held between a movable roller and fixed plates that acted as mandibles. Distance between the right and left mandibles was increased using a stepper motor system. The force applied to the gel was measured by a force transducer. The resultant cardiocyte strain was determined by imaging the cells with a microscope, capturing the images with a CCD camera, and measuring cardiocyte and sarcomere length changes. Cardiocyte stress was characterized with a finite-element method. These measurements of cardiocyte stress and strain were used to determine cardiocyte stiffness. Two variables affecting cardiocyte stiffness were measured, the passive elastic spring and viscous damping. The passive spring was assessed by increasing the force on the gel at 1 g/min, modeling the resultant stress vs. strain relationship as an exponential [sigma = A/k(ekepsilon - 1)]. In normal cardiocytes, A = 23.0 kN/m2 and k = 16. Viscous damping was assessed by examining the loop area between the stress vs. strain relationship during 1 g/min increases and decreases in force. Normal cardiocytes had a finite loop area = 1.39 kN/m2, indicating the presence of viscous damping. Thus the gel stretch method provided accurate measurements of cardiocyte constitutive properties. These measurements have allowed the first quantitative assessment of passive elastic spring properties and viscous damping in normal mammalian cardiocytes.


Subject(s)
Myocardium/cytology , Animals , Calcium/pharmacology , Cats , Cell Adhesion , Cell Physiological Phenomena , Cell Size , Cell Survival , Diacetyl/analogs & derivatives , Diacetyl/pharmacology , Egtazic Acid/pharmacology , Elasticity , Female , Gels/chemistry , Male , Sepharose/chemistry , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...