Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202401900, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38932565

ABSTRACT

This report describes an environmentally benign synthesis of 1,2,3-benzotriazines through an iodide-catalyzed electro-oxidative N-centered [1,2]-rearrangement of 3-aminoindazoles. The developed method demonstrates the activation of heteroatoms via electrochemically generated reactive iodide species without using any metal catalysts and peroxides. The protocol features practical and mild reaction conditions and displays a wide substrate scope. Various mechanistic experiments and cyclic voltammetric studies have been instrumental in elucidating the reaction mechanism, operating via a skeletal rearrangement of 3-aminoindazoles.

2.
Org Lett ; 26(13): 2651-2655, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38517192

ABSTRACT

An electrocatalytic approach to access structurally significant azabicyclic scaffolds from N-allyl enamine carboxylates is illustrated. This metal-free method functions exclusively with a catalytic amount of iodide, strategically employed to electrochemically generate a reactive hypervalent iodine species, which facilitates the cascade bicyclization processes with enhanced precision and efficiency. Excellent functional group compatibility was observed, enabling the synthesis of a series of azabicycle derivatives. Detailed mechanistic and electrochemical studies enhance the comprehension of the reaction sequence.

3.
Org Lett ; 25(31): 5896-5901, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37515784

ABSTRACT

A Cu-electrocatalytic azidation of N-aryl enamines and subsequent denitrogenative annulation for the construction of quinoxaline frameworks is reported. Only 0.5 mol % of copper(II) chloride was employed for this cascade transformation displaying excellent functional-group compatibility even with complex bioactive scaffolds. The efficient electro-oxidative protocol enables the use of NaN3 as the cheapest azide source. Detailed mechanistic experiments, cyclic voltammetry, and spectroscopic studies provided strong evidence for a dual role of the Cu catalyst in azidyl and iminyl radical generation steps.

4.
Org Lett ; 25(20): 3812-3817, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37196050

ABSTRACT

Intramolecular electro-oxidative addition of enamines or amides to nonactivated alkynes was attained to access carbonyl-pyrroles or -oxazoles from N-propargyl derivatives. Organoselenium was employed as the electrocatalyst, which played a crucial role as a π-Lewis acid and selectively activated the alkyne for the successful nucleophilic addition. The synthetic strategy permits a wide range of substrate scope up to 93% yield. Several mechanistic experiments, including the isolation of a selenium-incorporated intermediate adduct, enlighten the electrocatalytic pathway.

5.
Org Lett ; 24(6): 1274-1279, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35112868

ABSTRACT

An efficient synthetic route for the construction of N2-aryl 1,2,3-triazoles is reported via sequential C-N bond formation and electro-oxidative N-N coupling under metal-free conditions. Readily accessible 2-aminoacrylates and aryldiazonium salts were used as starting materials, and the developed protocol displays excellent functional group tolerance, allowing an extensive range of substrate scope up to 91% isolated yield. Various mechanistic studies, along with the isolation of an intermediate adduct, refer to successive ionic and radical reaction sequences.

6.
Angew Chem Int Ed Engl ; 61(5): e202111679, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34851544

ABSTRACT

An electrochemical method for the synthesis of unsymmetrically substituted NH-pyrroles is described. The synthetic strategy comprises a challenging heterocoupling between two structurally diverse enamines via sequential chemoselective oxidation, addition, and cyclization processes. A series of aryl- and alkyl-substituted enamines were effectively cross-coupled from an equimolar mixture to synthesize various unsymmetrical pyrrole derivatives up to 84 % yield. The desired cross-coupling was achieved by tuning the oxidation potential of the enamines by utilizing a "magic effect" of the additive trifluoroethanol (TFE). Additionally, extensive computational studies reveal the unique role of TFE in promoting the heterocoupling process by regulating the activation energies of the reaction steps through H-bonding and C-H⋅⋅⋅π interactions. Importantly, the developed electrochemical protocol was found to be equally efficient for the homocoupling of enamines to form symmetric pyrroles up to 92 % yield.

SELECTION OF CITATIONS
SEARCH DETAIL
...