Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 20(27): 5425-5434, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38946525

ABSTRACT

Biocatalytic membranes combine the separation properties of membranes and the catalytic abilities of enzymes, holding great promise for industries where both purification and conversion are required. In this work, polyelectrolyte complex membranes incorporated with lysozyme were prepared using polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS) through a one-step and mild pH shift aqueous phase separation (APS) approach. The effects of lysozyme addition and casting solution pH on the membrane properties were studied. All the membranes, both with and without added lysozyme, exhibited asymmetric structures with relatively dense top surfaces and porous cross-sections with finger-like macrovoids. The incorporation of lysozyme did not significantly influence the structure and permeability of the formed membranes. The PEI-PSS biocatalytic membranes exhibited temperature dependent enzymatic activity. The activity strongly increased with increased operational temperature, with the highest activity of 4.30 ± 0.15 U cm-2 at 45 °C. This indicates a responsive effect, where a higher temperature leads to some swelling of the polyelectrolyte complex membrane, making the enzyme more accessible to the used substrate. Moreover, the biocatalytic membranes demonstrate desirable enzymatic stability, maintaining 60% activity even after 60 days of storage. This study validates the potential of the water-based APS process as a straightforward approach for integrating enzymes into responsive biocatalytic membranes.

2.
ACS Appl Polym Mater ; 4(2): 1010-1020, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35178524

ABSTRACT

Hollow fiber (HF) membrane geometry is the preferred choice for most commercial membrane operations. Such fibers are conventionally prepared via the non-solvent-induced phase separation technique, which heavily relies on hazardous and reprotoxic organic solvents such as N-methyl pyrrolidone. A more sustainable alternative, i.e., aqueous phase separation (APS), was introduced recently that utilizes water as a solvent and non-solvent for the production of polymeric membranes. Herein, for the first time, we demonstrate the preparation of sustainable and functional HF membranes via the APS technique in a dry-jet wet spinning process. The dope solution comprising poly(sodium 4-styrenesulfonate) (PSS) and polyethyleneimine (PEI) at high pH along with an aqueous bore liquid is pushed through a single orifice spinneret into a low pH acetate buffer coagulation bath. Here, PEI becomes charged resulting in the formation of a polyelectrolyte complex with PSS. The compositions of the bore liquid and coagulation bath were systematically varied to study their effect on the structure and performance of the HF membranes. The microfiltration-type membranes (permeability ∼500 to 800 L·m-2·h-1·bar-1) with complete retention of emulsion droplets were obtained when the precipitation rate was slow. Increasing the concentration of the acetate buffer in the bath led to the increase in precipitation rate resulting in ultrafiltration-type membranes (permeability ∼12 to 15 L·m-2·h-1·bar-1) having molecular weight cut-offs in the range of ∼7.8-11.6 kDa. The research presented in this work confirms the versatility of APS and moves it another step closer to large-scale use.

3.
ACS Appl Polym Mater ; 3(7): 3560-3568, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34278307

ABSTRACT

The aqueous phase separation (APS) technique allows membrane fabrication without use of unsustainable organic solvents, while at the same time, it provides extensive control over membrane pore size and morphology. Herein, we investigate if polyelectrolyte complexation-induced APS ultrafiltration membranes can be the basis for different types of nanofiltration membranes. We demonstrate that APS membranes can be used as support membranes for functional surface coatings like thin polyelectrolyte multilayer (PEMs) and interfacial polymerization (IP) coatings. Three different PEMs were fabricated on poly(sodium 4-styrene sulfonate) (PSS) poly(allylamine hydrochloride) (PAH) APS ultrafiltration membranes, and only 4.5 bilayers were needed to create nanofiltration membranes with molecular weight cut-off (MWCO) values of 210-390 Da while maintaining a roughly constant water permeability (∼1.7 L·m-2·h-1·bar-1). The PEM-coated membranes showed excellent MgCl2 (∼98%), NaCl (∼70%), and organic micropollutant retention values (>90%). Similarly, fabricating thin polyamide layers on the ultrafiltration PSS-PAH APS membranes by IP resulted in nanofiltration membranes with MWCO values of ∼200 Da. This work shows for the first time that APS membranes can indeed be utilized as excellent support membranes for the application of functional coatings without requiring any form of pretreatment.

4.
ACS Appl Polym Mater ; 2(7): 2612-2621, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32685925

ABSTRACT

Polymeric membranes are used on very large scales for drinking water production and kidney dialysis, but they are nearly always prepared by using large quantities of unsustainable and toxic aprotic solvents. In this study, a water-based, sustainable, and simple way of making polymeric membranes is presented without the need for harmful solvents or extreme pH conditions. Membranes were prepared from water-insoluble polyelectrolyte complexes (PECs) via aqueous phase separation (APS). Strong polyelectrolytes (PEs), poly(sodium 4-styrenesulfonate) (PSS), and poly(diallyldimethylammonium chloride) (PDADMAC) were mixed in the presence of excess of salt, thereby preventing complexation. Immersing a thin film of this mixture into a low-salinity bath induces complexation and consequently the precipitation of a solid PEC-based membrane. This approach leads to asymmetric nanofiltration membranes, with thin dense top layers and porous, macrovoid-free support layers. While the PSS molecular weight and the total polymer concentrations of the casting mixture did not significantly affect the membrane structure, they did affect the film formation process, the resulting mechanical stability of the films, and the membrane separation properties. The salt concentration of the coagulation bath has a large effect on membrane structure and allows for control over the thickness of the separation layer. The nanofiltration membranes prepared by APS have a low molecular weight cutoff (<300 Da), a high MgSO4 retention (∼80%), and good stability even at high pressures (10 bar). PE complexation induced APS is a simple and sustainable way to prepare membranes where membrane structure and performance can be tuned with molecular weight, polymer concentration, and ionic strength.

SELECTION OF CITATIONS
SEARCH DETAIL
...