Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Mol Biol Rep ; 51(1): 783, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926176

ABSTRACT

BACKGROUND: Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental and genetically heterogeneous disorder, characterized by small cranium size (> - 3 SD below mean) and often results in varying degree of intellectual disability. Thirty genes have been identified for the etiology of this disorder due to its clinical and genetic heterogeneity. METHODS AND RESULTS: Here, we report two consanguineous Pakistani families affected with MCPH exhibiting mutation in WDR62 gene. The investigation approach involved Next Generation Sequencing (NGS) gene panel sequencing coupled with linkage analysis followed by validation of identified variants through automated Sanger sequencing and Barcode-Tagged (BT) sequencing. The molecular genetic analysis revealed one novel splice site variant (NM_001083961.2(WDR62):c.1372-1del) in Family A and one known exonic variant NM_001083961.2(WDR62):c.3936dup (p.Val1313Argfs*18) in Family B. Magnetic Resonance Imaging (MRI) scans were also employed to gain insights into the structural architecture of affected individuals. Neurological assessments showed the reduced gyral and sulcal patterns along with normal corpus callosum in affected individuals harboring novel variant. In silico assessments of the identified variants were conducted using different tools to confirm the pathogenicity of these variants. Through In silico analyses, both variants were identified as disease causing and protein modeling of exonic variant indicates subtle conformational alterations in prophesied protein structure. CONCLUSION: This study identifies a novel variant (c.1372-1del) and a recurrent pathogenic variant c.3936dup (p.Val1313Argfs*18) in the WDR62 gene among the Pakistani population, expanding the mutation spectrum for MCPH. These findings emphasize the importance of genetic counseling and awareness to reduce consanguinity and address the burden of this disorder.


Subject(s)
Consanguinity , Microcephaly , Mutation , Nerve Tissue Proteins , Pedigree , Humans , Microcephaly/genetics , Female , Male , Pakistan , Mutation/genetics , Nerve Tissue Proteins/genetics , Neuroimaging/methods , Child , Magnetic Resonance Imaging/methods , High-Throughput Nucleotide Sequencing/methods , Child, Preschool , Adolescent , Cell Cycle Proteins
2.
Front Genet ; 15: 1351710, 2024.
Article in English | MEDLINE | ID: mdl-38818041

ABSTRACT

Background: Hereditary neurodevelopmental disorders (NDDs) are prevalent in poorly prognostic pediatric diseases, but the pathogenesis of NDDs is still unclear. Irregular myelination could be one of the possible causes of NDDs. Case presentation: Here, whole exome sequencing was carried out for a consanguineous Pakistani family with NDDs to identify disease-associated variants. The co-segregation of candidate variants in the family was validated using Sanger sequencing. The potential impact of the gene on NDDs has been supported by conservation analysis, protein prediction, and expression analysis. A novel homozygous variant DOP1A(NM_001385863.1):c.2561A>G was identified. It was concluded that the missense variant might affect the protein-protein binding sites of the critical MEC interaction region of DOP1A, and DOP1A-MON2 may cause stability deficits in Golgi-endosome protein traffic. Proteolipid protein (PLP) and myelin-associate glycoprotein (MAG) could be targets of the DOP1A-MON2 Golgi-endosome traffic complex, especially during the fetal stage and the early developmental stages. This further supports the perspective that disorganized myelinogenesis due to congenital DOP1A deficiency might cause neurodevelopmental disorders (NDDs). Conclusion: Our case study revealed the potential pathway of myelinogenesis-relevant NDDs and identified DOP1A as a potential NDDs-relevant gene in humans.

3.
medRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746364

ABSTRACT

Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants. To define the phenotypic effects of RBL2 mutations in detail, we identified and clinically characterized a cohort of 28 patients from 18 families carrying LOF variants in RBL2 , including fourteen new variants that substantially broaden the molecular spectrum. The clinical presentation of affected individuals is characterized by a range of neurological and developmental abnormalities. Global developmental delay and intellectual disability were uniformly observed, ranging from moderate to profound and involving lack of acquisition of key motor and speech milestones in most patients. Frequent features included postnatal microcephaly, infantile hypotonia, aggressive behaviour, stereotypic movements and non-specific dysmorphic features. Common neuroimaging features were cerebral atrophy, white matter volume loss, corpus callosum hypoplasia and cerebellar atrophy. In parallel, we used the fruit fly, Drosophila melanogaster , to investigate how disruption of the conserved RBL2 orthologueue Rbf impacts nervous system function and development. We found that Drosophila Rbf LOF mutants recapitulate several features of patients harboring RBL2 variants, including alterations in the head and brain morphology reminiscent of microcephaly, and perturbed locomotor behaviour. Surprisingly, in addition to its known role in controlling tissue growth during development, we find that continued Rbf expression is also required in fully differentiated post-mitotic neurons for normal locomotion in Drosophila , and that adult-stage neuronal re-expression of Rbf is sufficient to rescue Rbf mutant locomotor defects. Taken together, this study provides a clinical and experimental basis to understand genotype-phenotype correlations in an RBL2 -linked neurodevelopmental disorder and suggests that restoring RBL2 expression through gene therapy approaches may ameliorate aspects of RBL2 LOF patient symptoms.

4.
Mov Disord ; 39(6): 983-995, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581205

ABSTRACT

BACKGROUND: Based on a limited number of reported families, biallelic CA8 variants have currently been associated with a recessive neurological disorder named, cerebellar ataxia, mental retardation, and dysequilibrium syndrome 3 (CAMRQ-3). OBJECTIVES: We aim to comprehensively investigate CA8-related disorders (CA8-RD) by reviewing existing literature and exploring neurological, neuroradiological, and molecular observations in a cohort of newly identified patients. METHODS: We analyzed the phenotype of 27 affected individuals from 14 families with biallelic CA8 variants (including data from 15 newly identified patients from eight families), ages 4 to 35 years. Clinical, genetic, and radiological assessments were performed, and zebrafish models with ca8 knockout were used for functional analysis. RESULTS: Patients exhibited varying degrees of neurodevelopmental disorders (NDD), along with predominantly progressive cerebellar ataxia and pyramidal signs and variable bradykinesia, dystonia, and sensory impairment. Quadrupedal gait was present in only 10 of 27 patients. Progressive selective cerebellar atrophy, predominantly affecting the superior vermis, was a key diagnostic finding in all patients. Seven novel homozygous CA8 variants were identified. Zebrafish models demonstrated impaired early neurodevelopment and motor behavior on ca8 knockout. CONCLUSION: Our comprehensive analysis of phenotypic features indicates that CA8-RD exhibits a wide range of clinical manifestations, setting it apart from other subtypes within the category of CAMRQ. CA8-RD is characterized by cerebellar atrophy and should be recognized as part of the autosomal-recessive cerebellar ataxias associated with NDD. Notably, the presence of progressive superior vermis atrophy serves as a valuable diagnostic indicator. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellar Ataxia , Zebrafish , Humans , Cerebellar Ataxia/genetics , Child , Adolescent , Male , Female , Child, Preschool , Animals , Adult , Young Adult , Anoctamins/genetics , Intellectual Disability/genetics , Phenotype , Neurodevelopmental Disorders/genetics
5.
Genet Med ; 26(7): 101143, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641995

ABSTRACT

PURPOSE: Neurodevelopmental disorders exhibit clinical and genetic heterogeneity, ergo manifest dysfunction in components of diverse cellular pathways; the precise pathomechanism for the majority remains elusive. METHODS: We studied 5 affected individuals from 3 unrelated families manifesting global developmental delay, postnatal microcephaly, and hypotonia. We used exome sequencing and prioritized variants that were subsequently characterized using immunofluorescence, immunoblotting, pulldown assays, and RNA sequencing. RESULTS: We identified biallelic variants in ZFTRAF1, encoding a protein of yet unknown function. Four affected individuals from 2 unrelated families segregated 2 homozygous frameshift variants in ZFTRAF1, whereas, in the third family, an intronic splice site variant was detected. We investigated ZFTRAF1 at the cellular level and signified it as a nucleocytoplasmic protein in different human cell lines. ZFTRAF1 was completely absent in the fibroblasts of 2 affected individuals. We also identified 110 interacting proteins enriched in mRNA processing and autophagy-related pathways. Based on profiling of autophagy markers, patient-derived fibroblasts show irregularities in the protein degradation process. CONCLUSION: Thus, our findings suggest that biallelic variants of ZFTRAF1 cause a severe neurodevelopmental disorder.


Subject(s)
Loss of Function Mutation , Microcephaly , Muscle Hypotonia , Neurodevelopmental Disorders , Pedigree , Humans , Microcephaly/genetics , Microcephaly/pathology , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Male , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Female , Child, Preschool , Loss of Function Mutation/genetics , Alleles , Child , Infant , Exome Sequencing , Fibroblasts/metabolism , Fibroblasts/pathology , Autophagy/genetics
6.
Mol Biol Rep ; 51(1): 104, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224417

ABSTRACT

BACKGROUND: Autosomal Recessive Primary Microcephaly (MCPH) is a rare, neurodevelopmental disorder associated with mild to severe mental retardation. It is characterized by reduced cerebral cortex that ultimately leads to reduction in skull size less than - 3 S.D below the mean for normal individuals having same age and sex. Till date, 30 known loci have been reported for MCPH. METHODS: In the present study, Sanger sequencing was performed followed by linkage analysis to validate the mutation in ASPM gene of the consanguineous Pakistani clans. Bioinformatics tools were also used to confirm the pathogenicity of the diseased variant in the gene. MRI scan was used to compare the brain structure of both the affected individuals (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). RESULTS: Our study described a consanguineous family with two patients with a known ASPM (MCPH5) variant c.8508_8509delGA causing a frameshift mutation in exon 18 which located in calmodulin-binding IQ domain of the ASPM protein. The salient feature of this study is that a single variant led to significantly distinct changes in the architecture of brain of both siblings which is further confirmed by MRI results. The computation analysis showed that the change in the conservation of this residue cause this variant highly pathogenic. Carrier screening and genetic counselling were also remarkable features of this study (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). CONCLUSION: This study explores the extraordinary influence of a single ASPM variant on divergent brain structure in consanguineous siblings and enable us to reduce the incidence of further microcephalic cases in this Pakistani family (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023).


Subject(s)
Brain , Siblings , Humans , Consanguinity , Pakistan , Brain/diagnostic imaging , Nerve Tissue Proteins
7.
Seizure ; 116: 74-80, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37574425

ABSTRACT

BACKGROUND: Adequate glucose supply is essential for brain function, therefore hypoglycemic states may lead to seizures. Since blood glucose supply for brain is buffered by liver glycogen, an impairment of liver glycogen synthesis by mutations in the liver glycogen synthase gene (GYS2) might result in a substantial neurological involvement. Here, we describe the phenotypes of affected siblings of two families harboring biallelic mutations in GYS2. METHODS: Two suspected families - a multiplex Pakistani family (family A) with three affected siblings and a family of Moroccan origin (family B) with a single affected child who presented with seizures and reduced fasting blood glucose levels were genetically characterized. Whole exome sequencing (WES) was performed on the index patients, followed by Sanger sequencing-based segregation analyses on all available members of both families. RESULTS: The variant prioritization of WES and later Sanger sequencing confirmed three mutations in the GYS2 gene (12p12.1) consistent with an autosomal recessive pattern of inheritance. A homozygous splice acceptor site variant (NM_021957.3, c. 1646 -2A>G) segregated in family A. Two novel compound heterozygous variants (NM_021957.3: c.343G>A; p.Val115Met and NM_021957.3: c.875A>T; p.Glu292Val) were detected in family B, suggesting glycogen storage disorder. A special diet designed to avoid hypoglycemia, in addition to change of the anti-seizure medication led to reduction in seizure frequency. CONCLUSIONS: This study suggests that the seizures in patients initially diagnosed with epilepsy might be directly caused, or influenced by hypoglycemia due to pathogenic variants in the GYS2 gene.


Subject(s)
Blood Glucose , Hypoglycemia , Child , Humans , Exome Sequencing , Liver Glycogen , Mutation/genetics
8.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Article in English | MEDLINE | ID: mdl-37711075

ABSTRACT

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Subject(s)
Adaptor Proteins, Vesicular Transport , Congenital Disorders of Glycosylation , Humans , Glycosylation , Adaptor Proteins, Vesicular Transport/genetics , Fibroblasts/metabolism , Congenital Disorders of Glycosylation/genetics , Phenotype
9.
Sci Rep ; 13(1): 13479, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596289

ABSTRACT

Craniosynostosis is characterized by the premature fusion and ossification of one or more of the sutures of the calvaria, often resulting in abnormal features of the face and the skull. In cases in which growth of the brain supersedes available space within the skull, developmental delay or cognitive impairment can occur. A complex interplay of different cell types and multiple signaling pathways are required for correct craniofacial development. In this study, we report on two siblings with craniosynostosis and a homozygous missense pathogenic variant within the IL11RA gene (c.919 T > C; p.W307R). The patients present with craniosynostosis, exophthalmos, delayed tooth eruption, mild platybasia, and a basilar invagination. The p.W307R variant is located within the arginine-tryptophan-zipper within the D3 domain of the IL-11R, a structural element known to be important for the stability of the cytokine receptor. Expression of IL-11R-W307R in cells shows impaired maturation of the IL-11R, no transport to the cell surface and intracellular retention. Accordingly, cells stably expressing IL-11R-W307R do not respond when stimulated with IL-11, arguing for a loss-of-function mutation. In summary, the IL-11R-W307R variant, reported here for the first time to our knowledge, is most likely the causative variant underlying craniosynostosis in these patients.


Subject(s)
Craniosynostoses , Humans , Craniosynostoses/genetics , Skull , Head , Brain , Arginine
10.
Genes (Basel) ; 14(7)2023 07 06.
Article in English | MEDLINE | ID: mdl-37510308

ABSTRACT

Spinocerebellar disorders are a vast group of rare neurogenetic conditions, generally characterized by overlapping clinical symptoms including progressive cerebellar ataxia, spastic paraparesis, cognitive deficiencies, skeletal/muscular and ocular abnormalities. The objective of the present study is to identify the underlying genetic causes of the rare spinocerebellar disorders in the Pakistani population. Herein, nine consanguineous families presenting different spinocerebellar phenotypes have been investigated using whole exome sequencing. Sanger sequencing was performed for segregation analysis in all the available individuals of each family. The molecular analysis of these families identified six novel pathogenic/likely pathogenic variants; ZFYVE26: c.1093del, SACS: c.1201C>T, BICD2: c.2156A>T, ALS2: c.2171-3T>G, ALS2: c.3145T>A, and B4GALNT1: c.334_335dup, and three already reported pathogenic variants; FA2H: c.159_176del, APTX: c.689T>G, and SETX: c.5308_5311del. The clinical features of all patients in each family are concurrent with the already reported cases. Hence, the current study expands the mutation spectrum of rare spinocerebellar disorders and implies the usefulness of next-generation sequencing in combination with clinical investigation for better diagnosis of these overlapping phenotypes.


Subject(s)
Cerebellar Ataxia , Humans , Pakistan , Pedigree , Mutation , DNA Helicases/genetics , RNA Helicases/genetics , Multifunctional Enzymes/genetics
11.
Clin Genet ; 104(3): 324-333, 2023 09.
Article in English | MEDLINE | ID: mdl-37317634

ABSTRACT

Intellectual developmental disorder with paroxysmal dyskinesia or seizures (IDDPADS, OMIM#619150) is an ultra-rare childhood-onset autosomal recessive movement disorder manifesting paroxysmal dyskinesia, global developmental delay, impaired cognition, progressive psychomotor deterioration and/or drug-refractory seizures. We investigated three consanguineous Pakistani families with six affected individuals presenting overlapping phenotypes partially consistent with the reported characteristics of IDDPADS. Whole exome sequencing identified a novel missense variant in Phosphodiesterase 2A (PDE2A): NM_002599.4: c.1514T > C p.(Phe505Ser) that segregated with the disease status of individuals in these families. Retrospectively, we performed haplotype analysis that revealed a 3.16 Mb shared haplotype at 11q13.4 among three families suggesting a founder effect in this region. Moreover, we also observed abnormal mitochondrial morphology in patient fibroblasts compared to controls. Belonging to diverse age groups (13 years-60 years), patients presented paroxysmal dyskinesia, developmental delay, cognitive abnormalities, speech impairment, and drug-refractory seizures with variable onset of disease (as early as 3 months of age to 7 years). Together with the previous reports, we observed that intellectual disability, progressive psychomotor deterioration, and drug-refractory seizures are consistent outcomes of the disease. However, permanent choreodystonia showed variability. We also noticed that the later onset of paroxysmal dyskinesia manifests severe attacks in terms of duration. Being the first report from Pakistan, we add to the clinical and mutation spectrum of PDE2A-related recessive disease raising the total number of patients from six to 12 and variants from five to six. Together, with our findings, the role of PDE2A is strengthened in critical physio-neurological processes.


Subject(s)
Chorea , Intellectual Disability , Humans , Intellectual Disability/genetics , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Chorea/genetics , Retrospective Studies , Pedigree , Mutation/genetics , Consanguinity , Seizures
12.
Am J Med Genet A ; 191(9): 2376-2391, 2023 09.
Article in English | MEDLINE | ID: mdl-37293956

ABSTRACT

Bardet-Biedl syndrome (BBS), is an emblematic ciliopathy hallmarked by pleiotropy, phenotype variability, and extensive genetic heterogeneity. BBS is a rare (~1/140,000 to ~1/160,000 in Europe) autosomal recessive pediatric disorder characterized by retinal degeneration, truncal obesity, polydactyly, cognitive impairment, renal dysfunction, and hypogonadism. Twenty-eight genes involved in ciliary structure or function have been implicated in BBS, and explain the molecular basis for ~75%-80% of individuals. To investigate the mutational spectrum of BBS in Romania, we ascertained a cohort of 24 individuals in 23 families. Following informed consent, we performed proband exome sequencing (ES). We detected 17 different putative disease-causing single nucleotide variants or small insertion-deletions and two pathogenic exon disruptive copy number variants in known BBS genes in 17 pedigrees. The most frequently impacted genes were BBS12 (35%), followed by BBS4, BBS7, and BBS10 (9% each) and BBS1, BBS2, and BBS5 (4% each). Homozygous BBS12 p.Arg355* variants were present in seven pedigrees of both Eastern European and Romani origin. Our data show that although the diagnostic rate of BBS in Romania is likely consistent with other worldwide cohorts (74%), we observed a unique distribution of causal BBS genes, including overrepresentation of BBS12 due to a recurrent nonsense variant, that has implications for regional diagnostics.


Subject(s)
Bardet-Biedl Syndrome , Humans , Romania , Bardet-Biedl Syndrome/diagnosis , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/pathology , Exome Sequencing , Homozygote , Mutation , Cytoskeletal Proteins/genetics , Phosphate-Binding Proteins/genetics
13.
J Hum Genet ; 68(7): 469-475, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36864288

ABSTRACT

Primary microcephaly is a rare, congenital, and genetically heterogeneous disorder in which occipitofrontal head circumference is reduced by a minimum of three standard deviations (SDs) from average because of the defect in fetal brain development. OBJECTIVE: Mapping of RBBP8 gene mutation that produce autosomal recessive primary microcephaly. Insilco RBBP8 protein models prediction and analysis. METHODS: Consanguineous Pakistani family affected with non-syndromic primary microcephaly was mapped a biallelic sequence variant (c.1807_1808delAT) in the RBBP8 gene via whole-exome sequencing. The deleted variant in the RBBP8 gene in affected siblings (V:4, V:6) of primary microcephaly was confirmed by sanger sequencing. RESULTS: Identified variant c.1807_1808delAT that truncated the protein translation p. Ile603Lysfs*7 and impaired the functioning of RBBP8 protein. This sequence variant was only reported previously in Atypical Seckel syndrome and Jawad syndrome, while we mapped it in the non-syndromic primary microcephaly family. We predicted 3D protein models by using Insilco tools like I TASSER, Swiss model, and phyre2 of wild RBBP8 protein of 897 amino acids and 608 amino acids of the mutant protein. These models were validated through the online SAVES server and Ramachandran plot and refined by using the Galaxy WEB server. A predicted and refined wild protein 3D model was deposited with accession number PM0083523 in Protein Model Database. A normal mode-based geometric simulation approach was used through the NMSim program, to find out the structural diversity of wild and mutant proteins which were evaluated by RMSD and RMSF. Higher RMSD and RMSF in mutant protein reduced the stability of the protein. CONCLUSION: The high possibility of this variant results in nonsense-mediated decay of mRNA, leading to the loss of protein functioning which causes primary microcephaly.


Subject(s)
Microcephaly , Humans , Microcephaly/genetics , Pedigree , Mutation , Mutant Proteins , Amino Acids/genetics , Endodeoxyribonucleases/genetics
14.
Genes (Basel) ; 13(9)2022 09 17.
Article in English | MEDLINE | ID: mdl-36140834

ABSTRACT

Background and objectives: Autosomal recessive spinocerebellar ataxia-13 (SCAR13) is an ultra-rare disorder characterized by slowly progressive cerebellar ataxia, cognitive deficiencies, and skeletal and oculomotor abnormalities. The objective of this case report is to expand the clinical and molecular spectrum of SCAR13. Methods: We investigated a consanguineous Pakistani family with four patients partially presenting with clinical features of SCAR13 using whole exome sequencing. Segregation analysis was performed by Sanger sequencing in all the available individuals of the family. Results: Patients presented with quadrupedal gait, delayed developmental milestones, non-progressive peripheral neuropathy, and cognitive impairment. Whole exome sequencing identified a novel pathogenic nonsense homozygous variant, Gly240*, in the gene GRM1 as a cause of SCAR13 that segregates with the recessive disease. Discussion: We report a novel homozygous nonsense variant in the GRM1 gene in four Pakistani patients presenting with clinical features that partially overlap with the already reported phenotype of SCAR13. In addition, the family presented quadrupedal gait and non-progressive symptoms, manifestations which have not been recognized previously. So far, only four variants in GRM1 have been reported, in families of Roma, Iranian, and Tunisian origins. The current study adds to the mutation spectrum of GRM1 and provides a rare presentation of SCAR13, the first from the Pakistani population.


Subject(s)
Spinocerebellar Ataxias , Humans , Iran , Pakistan , Pedigree , Spinocerebellar Ataxias/congenital , Spinocerebellar Ataxias/genetics
15.
Mol Genet Genomics ; 297(6): 1601-1613, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36002593

ABSTRACT

Hereditary neurological disorders (HNDs) are a clinically and genetically heterogeneous group of disorders. These disorders arise from the impaired function of the central or peripheral nervous system due to aberrant electrical impulses. More than 600 various neurological disorders, exhibiting a wide spectrum of overlapping clinical presentations depending on the organ(s) involved, have been documented. Owing to this clinical heterogeneity, diagnosing these disorders has been a challenge for both clinicians and geneticists and a large number of patients are either misdiagnosed or remain entirely undiagnosed. Contribution of genetics to neurological disorders has been recognized since long; however, the complete picture of the underlying molecular bases are under-explored. The aim of this study was to accurately diagnose 11 unrelated Pakistani families with various HNDs deploying NGS as a first step approach. Using exome sequencing and gene panel sequencing, we successfully identified disease-causing genomic variants these families. We report four novel variants, one each in, ECEL1, NALCN, TBR1 and PIGP in four of the pedigrees. In the rest of the seven families, we found five previously reported pathogenic variants in POGZ, FA2H, PLA2G6 and CYP27A1. Of these, three families segregate a homozygous 18 bp in-frame deletion of FA2H, indicating a likely founder mutation segregating in Pakistani population. Genotyping for this mutation can help low-cost population wide screening in the corresponding regions of the country. Our findings not only expand the existing repertoire of mutational spectrum underlying neurological disorders but will also help in genetic testing of individuals with HNDs in other populations.


Subject(s)
Nervous System Diseases , Humans , Pedigree , Exome Sequencing , Homozygote , Mutation , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Metalloendopeptidases , Transposases
16.
Int J Neurosci ; : 1-6, 2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35645363

ABSTRACT

BACKGROUND: Cockayne syndrome (CS) is a rare neurodegenerative disorder characterized by impaired neurological functions, cachectic dwarfism, microcephaly and photosensitivity. Complementation assays identify two groups of this disorder, CS type I (CSA) and CS type II (CSB), caused by mutations in ERCC8 and ERCC6, respectively. OBJECTIVES: This study aimed to investigate the genetic basis of a consanguineous Pakistani family with three affected individuals presenting with typical clinical symptoms of CS. METHODS: We employed whole exome sequencing of the proband and then Sanger sequenced all the family members to confirm its segregation in the family. Different bioinformatics tools were used to predict pathogenicity of this variant. RESULTS: Variants were filtered according to the pedigree structure. We identified a novel homozygous variant (c.202A>T; p.Ile68Phe) in ERCC8 gene in the proband. The variant was found to segregate in the family. CONCLUSIONS: These findings add to the genetic heterogeneity of ERCC8 and expands the mutation spectrum. Also, identification of this variant can facilitate prenatal diagnosis/genetic counselling set ups in Pakistan where this disease largely remains undiagnosed.

18.
Biomed Res Int ; 2022: 3769948, 2022.
Article in English | MEDLINE | ID: mdl-35281599

ABSTRACT

Microcephaly (MCPH) is a developmental anomaly of the brain known by reduced cerebral cortex and underdeveloped intellectual disability without additional clinical symptoms. It is a genetically and clinically heterogenous disorder. Twenty-five genes (involved in spindle positioning, Wnt signaling, centriole biogenesis, DNA repair, microtubule dynamics, cell cycle checkpoints, and transcriptional regulation) causing MCPH have been identified so far. Pakistani population has contributed in the identification of many MCPH genes. WES of three large consanguineous families revealed three pathogenic variants of MCPH1, CENPJ, and CASK. One novel (c.1254delT) deletion variant of MCPH1 and one known (c.18delC) deletion variant of CENPJ were identified in family 1 and 2, respectively. In addition to this, we also identified a missense variant (c.1289G>A) of CASK in males individuals in family 3. Missense mutation in the CASK gene is frequent in the boys with intellectual disability and autistic traits which are the common features that are associated with FG Syndrome 4. The study reports novel and reported mutant alleles disrupting the working of genes vital for normal brain functioning. The findings of this study enhance our understanding about the genetic architecture of primary microcephaly in our local pedigrees and add to the allelic heterogeneity of 3 known MCPH genes. The data generated will help to develop specific strategies to reduce the high incidence rate of MCPH in Pakistani population.


Subject(s)
Guanylate Kinases/genetics , Intellectual Disability , Microcephaly , Cell Cycle Proteins/genetics , Consanguinity , Cytoskeletal Proteins/genetics , Humans , Intellectual Disability/genetics , Male , Microcephaly/epidemiology , Microcephaly/genetics , Microcephaly/pathology , Microtubule-Associated Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Pakistan/epidemiology , Pedigree
19.
Pak J Med Sci ; 38(1): 84-89, 2022.
Article in English | MEDLINE | ID: mdl-35035405

ABSTRACT

BACKGROUND & OBJECTIVES: Primary Microcephaly (MCPH) is a rare neurogenetic disease, manifesting congenitally reduced head circumference and non-progressive intellectual disability (ID). To date, twenty-eight genes with biallelic mutations have been reported for this disorder. The study aimed for molecular genetic characterization of Pakistani families segregating MCPH. METHODS: We studied two unrelated consanguineous families (family A and B) presenting >2 patients with diagnostic symptoms of MCPH, born to asymptomatic parents. We employed whole-exome sequencing (WES) of probands to find putative causal mutations. The candidate variants were further confirmed and analyzed for co-segregation by Sanger sequencing of all available members of each family. This study was conducted at Government College University, Faisalabad, Pakistan, and Cologne Center for Genomics (CCG), University of Cologne, Germany; during 2017-2020. RESULTS: We identified a novel homozygous variant c.10097_10098delGA, p.(Gly3366Glufs*19) in exon 26 of ASPM gene in family A which presents with moderate intellectual disability, speech impairment, visual abnormalities, seizures, and ptyalism. Family B was found to segregate nonsense, homozygous variant c.448C>T p.(Arg150*) in CDK5RAP2. The patients also exhibited mild to severe seizures without ptyalism that has not been previously reported in patients with mutations in the CDK5RAP2 gene. CONCLUSION: We report a novel mutation in ASPM and ultra-rare mutation in the CDK5RAP2 gene, both causing primary microcephaly. The study expands the mutational spectrum of the ASPM gene to 212, and also adds to the clinical spectrum of CDK5RAP2 mutations. It also demonstrated the utility of WES in the investigation and genetic diagnosis of genetically heterogeneous disorders like MCPH. These findings would aid in diagnostic and preventive strategies including carrier screening, cascade testing, and genetic counselling.

20.
Am J Med Genet A ; 188(2): 498-508, 2022 02.
Article in English | MEDLINE | ID: mdl-34697879

ABSTRACT

Autosomal recessive limb-girdle muscular dystrophy-1 (LGMDR1) is an autosomal recessive disorder characterized by progressive weakness of the proximal limb and girdle muscles. Biallelic mutations in CAPN3 are reported frequently to cause LGMDR1. Here, we describe 11 individuals from three unrelated consanguineous families that present with typical features of LGMDR1 that include proximal muscle wasting, weakness of the upper and lower limbs, and elevated serum creatine kinase. Whole-exome sequencing identified a rare homozygous CAPN3 variant near the exon 2 splice donor site that segregates with disease in all three families. mRNA splicing studies showed partial retention of intronic sequence and subsequent introduction of a premature stop codon (NM_000070.3: c.379 + 3A>G; p.Asp128Glyfs*15). Furthermore, we observe reduced CAPN3 expression in primary dermal fibroblasts derived from an affected individual, suggesting instability and/or nonsense-mediated decay of mutation-bearing mRNA. Genome-wide homozygosity mapping and single-nucleotide polymorphism analysis identified a shared haplotype and supports a possible founder effect for the CAPN3 variant. Together, our data extend the mutational spectrum of LGMDR1 and have implications for improved diagnostics for individuals of Pakistani origin.


Subject(s)
Calpain , Muscular Dystrophies, Limb-Girdle , Calpain/genetics , Humans , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Pakistan , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...