Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 9131, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29904152

ABSTRACT

In this study, we report the first experimental realization of an ultrathin (0.14λ, λ = 1.482 mm means wavelength at 1 MHz in the water medium) subwavelength focusing acoustic lens that can surpass the Rayleigh diffraction limit (0.61λ/NA, NA means numerical aperture). It is termed a Super-Oscillatory Acoustic Lens (SOAL), and it operates in the megasonic range. The SOAL represents an interesting feature allowing the achievement of subwavelength focusing without the need to operate in close proximity to the object to be imaged. The optimal layout of the SOAL is obtained by utilizing a systematic design approach, referred to here as topology optimization. To this end, the optimization formulation is newly defined. The optimized SOAL is fabricated using a photo-etching process and its subwavelength focusing performance is verified experimentally via an acoustic intensity measurement system. From these measurements, we found that the proposed optimized SOAL can achieve superior focusing features with a Full Width at Half Maximum (FWHM) of ~0.40λ/NA ≃ 0.84 mm (for our SOAL, NA = 0.707) with the transmission efficiency of 26.5%.

2.
J Acoust Soc Am ; 144(6): 3124, 2018 12.
Article in English | MEDLINE | ID: mdl-30599693

ABSTRACT

When a beam emitted from an active monostatic sensor system sweeps across a volume, the echoes from scatterers present will fluctuate from ping to ping due to various interference phenomena and statistical processes. Observations of these fluctuations can be used, in combination with models, to infer properties of the scatterers such as numerical density. Modeling the fluctuations can also help predict system performance and associated uncertainties in expected echoes. This tutorial focuses on "physics-based statistics," which is a predictive form of modeling the fluctuations. The modeling is based principally on the physics of the scattering by individual scatterers, addition of echoes from randomized multiple scatterers, system effects involving the beampattern and signal type, and signal theory including matched filter processing. Some consideration is also given to environment-specific effects such as the presence of boundaries and heterogeneities in the medium. Although the modeling was inspired by applications of sonar in the field of underwater acoustics, the material is presented in a general form, and involving only scalar fields. Therefore, it is broadly applicable to other areas such as medical ultrasound, non-destructive acoustic testing, in-air acoustics, as well as radar and lasers.

3.
J Acoust Soc Am ; 133(3): 1225-36, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23463995

ABSTRACT

Equations for the nonaxisymmetric modes that are axially and circumferentially propagating in a liquid-filled tube with elastic walls surrounded by air/vacuum are presented using exact elasticity theory. Dispersion curves for the axially propagating modes are obtained and verified through comparison with measurements. The resulting theory is applied to the circumferential modes, and the pressures and the stresses in the liquid-filled pipe are calculated under external forced oscillation by an acoustic source. This provides the theoretical foundation for the narrow band acoustic bubble detector that was subsequently deployed at the Target Test Facility (TTF) of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), TN.


Subject(s)
Acoustics , Models, Theoretical , Sound , Acoustics/instrumentation , Air , Elasticity , Equipment Design , Finite Element Analysis , Motion , Oscillometry , Pressure , Signal Processing, Computer-Assisted , Sound Spectrography , Stress, Mechanical , Time Factors , Transducers, Pressure , Vacuum
4.
J Acoust Soc Am ; 133(1): 5-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23297876

ABSTRACT

Love's model for the acoustic scattering by a spherical viscous fluid shell filled with gas and surrounded by inviscid liquid [J. Acoust. Soc. Am. 64, 571-580 (1978)] is reviewed. For certain material parameters, discrepancies are observed in Love's scattering cross section when compared with the exact solution near resonance. Those errors are corrected in this study. It is shown that there is excellent agreement between the corrected formulation and the exact solution in the resonance region where ka=1 and ε = b/a ≥ 2.5, where k is the acoustic wavenumber, and a and b are the inner and outer radii of the shell, respectively. Errors between Love's equation and the exact solution are not significant for the case of swimbladder-bearing fish where the bubble radius is typically greater than about 0.05 m, but could be large for bubbles and gas-bearing zooplankton where the radius is less than about 0.05 m.


Subject(s)
Acoustics , Fishes/physiology , Models, Biological , Air Sacs , Animals
5.
J Acoust Soc Am ; 131(3): 2413-21, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22423788

ABSTRACT

This paper describes a demonstration and explanation of sound absorption in water due to bubbles, and in air due to a fog of water droplets. It is suitable for 10-12 year olds, but the paper indicates where further exploration of the simplifications in the explanations provided for that age range would allow the demonstration to be used for undergraduate and Masters-level teaching. Applications to submarines, the space shuttle, and neutron generators are described. The demonstration is designed for transportation in a family-sized car.

6.
J Acoust Soc Am ; 130(2): 695-706, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21877784

ABSTRACT

This paper uses a finite element method (FEM) to compare predictions of the attenuation and sound speeds of acoustic modes in a fluid-filled pipe with those of the analytical model presented in the first paper in this series. It explains why, when the predictions of the earlier paper were compared with experimental data from a water-filled PMMA pipe, the uncertainties and agreement for attenuation data were worse than those for sound speed data. Having validated the FEM approach in this way, the versatility of FEM is thereafter demonstrated by modeling two practical applications which are beyond the analysis of the earlier paper. These applications model propagation in the mercury-filled steel pipework of the Spallation Neutron Source at the Oak Ridge National Laboratory (Tennessee), and in a long-standing design for acoustic sensors for use on planetary probes. The results show that strong coupling between the fluid and the solid walls means that erroneous interpretations are made of the data if they assume that the sound speed and attenuation in the fluid in the pipe are the same as those that would be measured in an infinite volume of identical fluid, assumptions which are common when such data have previously been interpreted.


Subject(s)
Acoustics/instrumentation , Astronomy/instrumentation , Computer Simulation , Finite Element Analysis , Models, Theoretical , Neutrons , Planets , Sound , Elasticity , Equipment Design , Extraterrestrial Environment , Mercury , Motion , Polymethyl Methacrylate , Steel , Time Factors , Transducers , Water
7.
J Acoust Soc Am ; 130(6): 3838-51, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22225041

ABSTRACT

When synthetic aperture sonar (SAS) is used to image elastic targets in water, subtle features can be present in the images associated with the dynamical response of the target being viewed. In an effort to improve the understanding of such responses, as well as to explore alternative image processing methods, a laboratory-based system was developed in which targets were illuminated by a transient acoustic source, and bistatic responses were recorded by scanning a hydrophone along a rail system. Images were constructed using a relatively conventional bistatic SAS algorithm and were compared with images based on supersonic holography. The holographic method is a simplification of one previously used to view the time evolution of a target's response [Hefner and Marston, ARLO 2, 55-60 (2001)]. In the holographic method, the space-time evolution of the scattering was used to construct a two-dimensional image with cross range and time as coordinates. Various features for vertically hung cylindrical targets were interpreted using high frequency ray theory. This includes contributions from guided surface elastic waves, as well as transmitted-wave features and specular reflection.

8.
J Acoust Soc Am ; 128(5): 2610-24, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21110559

ABSTRACT

Del Grosso's [Acustica 24, 299-311 (1971)] formulation, which predicts the phase speed of propagating axisymmetric modes inside a liquid-filled tube, is here extended to the complex domain in order to predict the attenuation, as well as the sound speed, of the modes as a function of frequency. Measurements of the sound speeds and the attenuations of the modes were performed in a water-filled Poly (methyl methacrylate) (PMMA) tube of internal radius, b=4.445 cm, in the range of the wavenumber-radius product, k(1)b, from 2 to 10. Parts of three or four modes were investigated and the measured sound speeds and the damping of the modes were compared with the theoretical predictions. The theory was then used to estimate the modal sound speeds and attenuations in a stainless-steel pipe filled with mercury having the same dimensions as are used in the Spallation Neutron Source at Oak Ridge National Laboratory, Tennessee.


Subject(s)
Acoustics , Mercury , Models, Theoretical , Water , Polymethyl Methacrylate , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...