Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 18(8): e2105087, 2022 02.
Article in English | MEDLINE | ID: mdl-34894074

ABSTRACT

The diamond-graphite hybrid thin film with low-dimensional nanostructure (e.g., nitrogen-included ultrananocrystalline diamond (N-UNCD) or the alike), has been employed in many impactful breakthrough applications. However, the detailed picture behind the bottom-up evolution of such intriguing carbon nanostructure is far from clarified yet. Here, the authors clarify it, through the concerted efforts of microscopic, physical, and electrochemical analyses for a series of samples synthesized by hot-filament chemical vapor deposition using methane-hydrogen precursor gas, based on the hydrogen-dependent surface reconstruction of nanodiamond and on the substrate-temperature-dependent variation of the growth species (atomic hydrogen and methyl radical) concentration near substrate. The clarified picture provides insights for a drastic enhancement in the electrochemical activities of the hybrid thin film, concerning the detection of important biomolecule, that is, ascorbic acid, uric acid, and dopamine: their limits of detections are 490, 35, and 25 nm, respectively, which are among the best of the all-carbon thin film electrodes in the literature. This work also enables a simple and effective way of strongly enhancing AA detection.


Subject(s)
Graphite , Nanostructures , Diamond/chemistry , Dopamine/analysis , Electrochemical Techniques , Electrodes , Graphite/chemistry , Nanostructures/chemistry
2.
Sci Rep ; 6: 23913, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27032957

ABSTRACT

We analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells. The former origin was dominant over the latter at the outermost shell, of which the relevant evolution in defect density, DOS and electron transfer kinetics determined the electrochemical performances. In detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) using the OLC as electrode, their oxidation peak currents were enhanced by factors of 15~60 with annealing temperature. Their limit of detection and the linear range of detection, in the post-treatment-free condition, were as excellent as those of the nano-carbon electrodes post-treated by Pt-decoration, N-doping, plasma, or polymer.

3.
J Nanosci Nanotechnol ; 12(4): 3665-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22849192

ABSTRACT

ZnO films co-doped with fluorine and hydrogen were prepared on Corning glass by radio frequency magnetron sputtering of ZnO targets with varying amounts of ZnF2 in H2/Ar gas mixtures of varying H2 content. The ZnO films' electrical, optical, and structural properties in combination with their compositional properties were investigated. A small addition of H2 to the sputtering gas caused a drastic increase of Hall mobility with a marginal increase in carrier concentration, indicating an effective passivation of grain boundaries due to hydrogenation. For further increase of H2 in sputter gas, the Hall mobility remained at a relatively constant level while the carrier concentration increased steadily. Most of the ZnO films co-doped with fluorine and hydrogen showed average transmittance higher than 83% in the 400-800 nm range, while the average absorption coefficients were lower than 600 cm(-1), implying very low absorption loss in these films. It was discovered that the fabrication of ZnO films with a Hall mobility higher than 40 cm2/Vs and a very low absorption loss in the visible range is possible by co-doping hydrogen and fluorine.

SELECTION OF CITATIONS
SEARCH DETAIL
...