Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Pat Anal ; 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33467938

ABSTRACT

The use of nanoparticulate systems to diagnose and treat tumors has gained momentum with the rapid development of nanomedicine. Many nanotheranostics fail due to insufficient bioavailability and low accumulation at the tumor site, resulting in undesirable side effects. We describe the use of an engineered hepatitis E viral nanoparticle (HEVNP) with enhanced bioavailability, tissue retention and mucosal penetration capacities. HEVNP is a modular nanocapsule that can encapsulate heterologous nucleotides, proteins and inorganic metals, such as ferrite oxide nanoparticles. Additionally, the exterior protruding arms of HEVNP is composed of loops that are used for chemical coupling of targeting and therapeutic peptides. We propose the use of HEVNP to target colorectal cancer (i.e., polyps) with imaging-guided delivery using colonoscopy.

2.
Microorganisms ; 8(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846899

ABSTRACT

Coxsackievirus B (CVB) enteroviruses are common pathogens that can cause acute and chronic myocarditis, dilated cardiomyopathy, aseptic meningitis, and they are hypothesized to be a causal factor in type 1 diabetes. The licensed enterovirus vaccines and those currently in clinical development are traditional inactivated or live attenuated vaccines. Even though these vaccines work well in the prevention of enterovirus diseases, new vaccine technologies, like virus-like particles (VLPs), can offer important advantages in the manufacturing and epitope engineering. We have previously produced VLPs for CVB3 and CVB1 in insect cells. Here, we describe the production of CVB3-VLPs with enhanced production yield and purity using an improved purification method consisting of tangential flow filtration and ion exchange chromatography, which is compatible with industrial scale production. We also resolved the CVB3-VLP structure by Cryo-Electron Microscopy imaging and single particle reconstruction. The VLP diameter is 30.9 nm on average, and it is similar to Coxsackievirus A VLPs and the expanded enterovirus cell-entry intermediate (the 135s particle), which is ~2 nm larger than the mature virion. High neutralizing and total IgG antibody levels, the latter being a predominantly Th2 type (IgG1) phenotype, were detected in C57BL/6J mice immunized with non-adjuvanted CVB3-VLP vaccine. The structural and immunogenic data presented here indicate the potential of this improved methodology to produce highly immunogenic enterovirus VLP-vaccines in the future.

3.
Pharm Pat Anal ; 7(3): 121-127, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29676653

ABSTRACT

For the past eight decades, subcutaneous injection has been the main route used for supplementing the suboptimal insulin secretion for administering insulin as a treatment for diabetes mellitus. Although this method is effective, subcutaneous injections are painful, inconvenient and carry a high risk of infections leading to poor patient compliance. The insulin-encapsulated hepatitis E virus nanoparticle, composed of the noninfectious hepatitis E viral capsid, is expected to deliver insulin from the GI tract to the liver after ingestion. Hepatitis E virus nanoparticle could be the answer to the long search of effective and efficient means to administer insulin orally and the most preferred route of drug delivery with highest patient compliance.


Subject(s)
Capsid Proteins , Drug Delivery Systems , Hepatitis E virus , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Nanocapsules/administration & dosage , Administration, Oral , Animals , Diabetes Mellitus/drug therapy , Drinking , Humans , Patents as Topic
4.
Sci Rep ; 7(1): 17048, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213060

ABSTRACT

Hepatitis E Virus-like particles self-assemble in to noninfectious nanocapsids that are resistant to proteolytic/acidic mucosal delivery conditions. Previously, the nanocapsid was engineered to specifically bind and enter breast cancer cells, where successful tumor targeting was demonstrated in animal models. In the present study, the nanocapsid surface was modified with a solvent-exposed cysteine to conjugate monolayer protected gold nanoclusters (AuNC). Unlike commercially available gold nanoparticles, AuNCs monodisperse in water and are composed of a discrete number of gold atoms, forming a crystalline gold core. Au102 pMBA44 (Au102) was an ideal conjugate given its small 2.5 nm size and detectability in cryoEM. Au102 was bound directly to nanocapsid surface cysteines via direct ligand exchange. In addition, Au102 was functionalized with a maleimide linker (Au102_C6MI) for maleimide-thiol conjugation to nanocapsid cysteines. The AuNC-bound nanocapsid constructs were conjugated in various conditions. We found Au102_C6MI to bind nanocapsid more efficiently, while Au102 remained more soluble over time. Nanocapsids conjugated to Au102_C6MI were imaged in cryoEM for single particle reconstruction to localize AuNC position on the nanocapsid surface. We resolved five unique high intensity volumes that formed a ring-shaped density at the 5-fold symmetry center. This finding was further supported by independent rigid modeling.


Subject(s)
Capsid Proteins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , Hepatitis E virus/metabolism , Maleimides/chemistry , Microscopy, Electron, Transmission , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...