Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 281(10): 6813-25, 2006 Mar 10.
Article in English | MEDLINE | ID: mdl-16407202

ABSTRACT

Rhodopsin is a G-protein-coupled receptor (GPCR) that is the light detector in the rod cells of the eye. Rhodopsin is the best understood member of the large GPCR superfamily and is the only GPCR for which atomic resolution structures have been determined. However, these structures are for the inactive, dark-adapted form. Characterization of the conformational changes in rhodopsin caused by light-induced activation is of wide importance, because the metarhodopsin-II photoproduct is analogous to the agonist-occupied conformation of other GPCRs, and metarhodopsin-I may be similar to antagonist-occupied GPCR conformations. In this work we characterize the interaction of antibody K42-41L with the metarhodopsin photoproducts. K42-41L is shown to inhibit formation of metarhodopsin-II while it stabilizes the metarhodopsin-I state. Thus, K42-41L recognizes an epitope accessible in dark-adapted rhodopsin and metarhodopsin-I that is lost upon formation of metarhodopsin-II. Previous work has shown that the peptide TGALQERSK is able to mimic the K42-41L epitope, and we have now determined the structure of the K42-41L-peptide complex. The structure demonstrates a central role for elements of the rhodopsin C3 loop, particularly Gln238 and Glu239, in the interaction with K42-41L. Geometric constraints taken from the antibody-bound peptide were used to model the epitope on the rhodopsin surface. The resulting model suggests that K42-41L locks the C3 loop into an extended conformation that is intermediate between two compact conformations seen in crystal structures of dark-adapted rhodopsin. Together, the structural and functional data strongly suggest that the equilibrium between metarhodopsin-I and metarhodopsin-II is dependent upon the conformation of the C3 loop. The biological implications of this model and its possible relations to dimeric and multimeric complexes of rhodopsin are discussed.


Subject(s)
Rhodopsin/chemistry , Rhodopsin/metabolism , Animals , Cattle , Cytoplasm/chemistry , Cytoplasm/metabolism , Epitopes/immunology , Models, Chemical , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Retina/chemistry , Retina/metabolism , Rhodopsin/immunology
2.
Protein Sci ; 12(11): 2453-75, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14573859

ABSTRACT

Rhodopsin is the best-understood member of the large G protein-coupled receptor (GPCR) superfamily. The G-protein amplification cascade is triggered by poorly understood light-induced conformational changes in rhodopsin that are homologous to changes caused by agonists in other GPCRs. We have applied the "antibody imprint" method to light-activated rhodopsin in native membranes by using nine monoclonal antibodies (mAbs) against aqueous faces of rhodopsin. Epitopes recognized by these mAbs were found by selection from random peptide libraries displayed on phage. A new computer algorithm, FINDMAP, was used to map the epitopes to discontinuous segments of rhodopsin that are distant in the primary sequence but are in close spatial proximity in the structure. The proximity of a segment of the N-terminal and the loop between helices VI and VIII found by FINDMAP is consistent with the X-ray structure of the dark-adapted rhodopsin. Epitopes to the cytoplasmic face segregated into two classes with different predicted spatial proximities of protein segments that correlate with different preferences of the antibodies for stabilizing the metarhodopsin I or metarhodopsin II conformations of light-excited rhodopsin. Epitopes of antibodies that stabilize metarhodopsin II indicate conformational changes from dark-adapted rhodopsin, including rearrangements of the C-terminal tail and altered exposure of the cytoplasmic end of helix VI, a portion of the C-3 loop, and helix VIII. As additional antibodies are subjected to antibody imprinting, this approach should provide increasingly detailed information on the conformation of light-excited rhodopsin and be applicable to structural studies of other challenging protein targets.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Rhodopsin/chemistry , Algorithms , Amino Acid Sequence , Amino Acid Substitution , Animals , Antibodies, Monoclonal/immunology , Cattle , Consensus Sequence , Crystallography, X-Ray , Cytoplasm/chemistry , Cytoplasm/metabolism , Darkness , Epitope Mapping/methods , Light , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/radiation effects , Rhodopsin/immunology , Rhodopsin/radiation effects , Rod Cell Outer Segment/chemistry , Rod Cell Outer Segment/metabolism
3.
J Comput Biol ; 10(3-4): 555-67, 2003.
Article in English | MEDLINE | ID: mdl-12935344

ABSTRACT

Antibodies that bind to protein surfaces of interest can be used to report the three-dimensional structure of the protein as follows: Proteins are composed of linear polypeptide chains that fold together in complex spatial patterns to create the native protein structure. These folded structures form binding sites for antibodies. Antibody binding sites are typically "assembled" on the protein surface from segments that are far apart in the primary amino acid sequence of the target proteins. Short amino acid probe sequences that bind to the active region of each antibody can be used as witnesses to the antibody epitope surface and these probes can be efficiently selected from random sequence peptide libraries. This paper presents a new method to align these antibody epitopes to discontinuous regions of the one-dimensional amino acid sequence of a target protein. Such alignments of the epitopes indicate how segments of the protein sequence must be folded together in space and thus provide long-range constraints for solving the 3-D protein structure. This new antibody-based approach is applicable to the large fraction of proteins that are refractory to current approaches for structure determination and has the additional advantage of requiring very small amounts of the target protein. The binding site of an antibody is a surface, not just a continuous linear sequence, so the epitope mapping alignment problem is outside the scope of classical string alignment algorithms, such as Smith-Waterman. We formalize the alignment problem that is at the heart of this new approach, prove that the epitope mapping alignment problem is NP-complete, and give some initial results using a branch-and-bound algorithm to map two real-life cases. Initial results for two validation cases are presented for a graph-based protein surface neighbor mapping procedure that promises to provide additional spatial proximity information for the amino acid residues on the protein surface.


Subject(s)
Antibodies/immunology , Computational Biology/methods , Epitope Mapping/methods , Proteins/chemistry , Actins/chemistry , Actins/immunology , Algorithms , Amino Acid Substitution , Proteins/genetics , Proteins/immunology , Sequence Alignment/methods , Sequence Analysis, Protein/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...