Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 14(2): 3595-620, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23434660

ABSTRACT

Extracellular-signal regulated kinase (ERK) signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2) as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.

2.
Pharmacol Biochem Behav ; 102(3): 442-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22705493

ABSTRACT

Marijuana abuse during adolescence may alter its abuse liability during adulthood by modifying the interoceptive (discriminative) stimuli produced, especially in females due to an interaction with ovarian hormones. To examine this possibility, either gonadally intact or ovariectomized (OVX) female rats received 40 intraperitoneal injections of saline or 5.6 mg/kg of Δ9-THC daily during adolescence, yielding 4 experimental groups (intact/saline, intact/Δ9-THC, OVX/saline, and OVX/Δ9-THC). These groups were then trained to discriminate Δ9-THC (0.32-3.2 mg/kg) from saline under a fixed-ratio (FR) 20 schedule of food presentation. After a training dose was established for the subjects in each group, varying doses of Δ9-THC were substituted for the training dose to obtain dose-effect (generalization) curves for drug-lever responding and response rate. The results showed that: 1) the OVX/saline group had a substantially higher mean response rate under control conditions than the other three groups, 2) both OVX groups had higher percentages of THC-lever responding than the intact groups at doses of Δ9-THC lower than the training dose, and 3) the OVX/Δ9-THC group was significantly less sensitive to the rate-decreasing effects of Δ9-THC compared to other groups. Furthermore, at sacrifice, western blot analyses indicated that chronic Δ9-THC in OVX and intact females decreased cannabinoid type-1 receptor (CB1R) levels in the striatum, and decreased phosphorylation of cyclic adenosine monophosphate response element binding protein (p-CREB) in the hippocampus. In contrast to the hippocampus, chronic Δ9-THC selectively increased p-CREB in the OVX/saline group in the striatum. Extracellular signal-regulated kinase (ERK) was not significantly affected by either hormone status or chronic Δ9-THC. In summary, these data in female rats suggest that cannabinoid abuse by adolescent human females could alter their subsequent responsiveness to cannabinoids as adults and have serious consequences for brain development.


Subject(s)
Discrimination, Psychological/drug effects , Dronabinol/pharmacology , Gonadal Steroid Hormones/pharmacology , Hallucinogens/pharmacology , Ovary/physiology , Animals , Blotting, Western , Conditioning, Operant/drug effects , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Cyclic AMP Response Element-Binding Protein/metabolism , Data Interpretation, Statistical , Discrimination Learning/drug effects , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Hippocampus/drug effects , Hippocampus/enzymology , Ovariectomy , Psychomotor Performance/drug effects , Rats , Rats, Long-Evans , Receptor, Cannabinoid, CB1/drug effects , Reinforcement Schedule
3.
Cell Commun Signal ; 7: 26, 2009 Nov 23.
Article in English | MEDLINE | ID: mdl-19930650

ABSTRACT

ERK signaling regulates focal adhesion disassembly during cell movement, and increased ERK signaling frequently contributes to enhanced motility of human tumor cells. We previously found that the ERK scaffold MEK Partner 1 (MP1) is required for focal adhesion disassembly in fibroblasts. Here we test the hypothesis that MP1-dependent ERK signaling regulates motility of DU145 prostate cancer cells. We find that MP1 is required for motility on fibronectin, but not for motility stimulated by serum or EGF. Surprisingly, MP1 appears not to function through its known binding partners MEK1 or PAK1, suggesting the existence of a novel pathway by which MP1 can regulate motility on fibronectin. MP1 may function by regulating the stability or expression of paxillin, a key regulator of motility.

SELECTION OF CITATIONS
SEARCH DETAIL
...