Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
2.
Ann ICRP ; 48(2-3): 9-501, 2019 12.
Article in English | MEDLINE | ID: mdl-31850780

ABSTRACT

The 2007 Recommendations (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979a,b, 1980a, 1981, 1988) and Publication 68 (ICRP, 1994b). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1989a, 1997) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2 and its task groups. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 (ICRP, 2015) describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), OIR Part 3 (ICRP, 2017), this current publication, and the final publication in the OIR series (OIR Part 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic models; and data on monitoring techniques for the radioisotopes most commonly encountered in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The online electronic files that accompany the OIR series of publications contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. This fourth publication in the OIR series provides the above data for the following elements: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), actinium (Ac), protactinium (Pa), neptunium (Np), plutonium (Pu), americium (Am), curium (Cm), berkelium (Bk), californium (Cf), einsteinium (Es), and fermium (Fm).


Subject(s)
Occupational Exposure/prevention & control , Radiation Exposure/prevention & control , Radiation Monitoring/standards , Radiation Protection/standards , Radioisotopes/adverse effects , Dose-Response Relationship, Radiation , Humans , Radiation Exposure/standards , Radiation, Ionizing , Risk Assessment
3.
J Radiol Prot ; 38(2): 831-853, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29714715

ABSTRACT

Following inhalation of an aerosol of relatively insoluble particles, it is usually found that the fractional dissolution rate of material retained in the lungs decreases with time, and the amount remaining undissolved can be represented simply by a decreasing exponential function with two or more components. A few exceptions are known, in which the dissolution rate increases with time. The most important in the context of radiological protection is probably that of 238Pu dioxide. Several published comprehensive data sets, from animal studies and accidental human exposures, have been analysed using the Human Respiratory Tract Model (HRTM) of the International Commission on Radiological Protection. The HRTM contains a simplified representation of particle dissolution in the respiratory tract, suitable for routine radiological protection purposes. Still, it was found to have sufficient flexibility to represent the measurement data in most of these cases. Although the 238Pu dioxide showed a wide range of behaviour in the different studies, there was good agreement between the absorption behaviour modelled for two studies involving 'ceramic' 238Pu dioxide as used in spacecraft radioisotope thermoelectric generators: a long-term experimental study in dogs and an accidental exposure involving a group of workers.


Subject(s)
Lung/metabolism , Oxides/pharmacokinetics , Plutonium/pharmacokinetics , Aerosols , Animals , Humans , Models, Animal
4.
Proc Meet Acoust ; 35(1)2018 Nov 05.
Article in English | MEDLINE | ID: mdl-32612741

ABSTRACT

Our goal is an office-based, handheld ultrasound system to target, detach, break, and/or expel stones and stone fragments from the urinary collecting system to facilitate natural clearance. Repositioning of stones in humans (maximum 2.5 MPa, and 3-second bursts) and breaking of stones in a porcine model (maximum 50 cycles, 20 Hz repetition, 30 minutes, and 7 MPa peak negative pressure) have been demonstrated using the same 350-kHz probe. Repositioning in humans was conducted during surgery with a ureteroscope in the kidney to film stone movement. Independent video review confirmed stone movements (≥ 3 mm) in 15 of 16 kidneys (94%). No serious or unanticipated adverse events were reported. Experiments of burst wave lithotripsy (BWL) effectiveness on breaking human stones implanted in the porcine bladder and kidney demonstrated fragmentation of 8 of 8 stones on post mortem dissection. A 1-week survival study with the BWL exposures and 10 specific-pathogen-free pigs, showed all findings were within normal limits on clinical pathology, hematology, and urinalysis. These results demonstrate that repositioning of stones with ultrasonic propulsion and breaking of stones with BWL are safe and effective.

5.
Proc Meet Acoust ; 35(1)2018 Nov 05.
Article in English | MEDLINE | ID: mdl-32612743

ABSTRACT

Burst wave lithotripsy (BWL) is a new non-invasive method for stone comminution using bursts of sub-megahertz ultrasound. A porcine model of urolithiasis and techniques to implement BWL treatment has been developed to evaluate its effectiveness and acute safety. Six human calcium oxalate monohydrate stones (6-7 mm) were hydrated, weighed, and surgically implanted into the kidneys of three pigs. Transcutaneous stone treatments were performed with a BWL transducer coupled to the skin via an external water bath. Stone targeting and treatment monitoring were performed with a co-aligned ultrasound imaging probe. Treatment exposures were applied in three 10-minute intervals for each stone. If sustained cavitation in the parenchyma was observed by ultrasound imaging feedback, treatment was paused and the pressure amplitude was decreased for the remaining time. Peak negative focal pressures between 6.5 and 7 MPa were applied for all treatments. After treatment, stone fragments were removed from the kidneys. At least 50% of each stone was reduced to <2 mm fragments. 100% of four stones were reduced to <4 mm fragments. Magnetic resonance imaging showed minimal injury to the functional renal volume. This study demonstrated that BWL could be used to effectively fragment kidney stones with minimal injury.

6.
Ann ICRP ; 46(3-4): 1-486, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29380630

ABSTRACT

Abstract ­: The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988) and Publication 68 (ICRP, 1994). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), this current publication and upcoming publications in the OIR series (Parts 4 and 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv Bq−1 intake) for inhalation and ingestion, tables of committed effective dose per content (Sv Bq−1 measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The electronic annex that accompanies the OIR series of publications contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. This third publication in the series provides the above data for the following elements: ruthenium (Ru), antimony (Sb), tellurium (Te), iodine (I), caesium (Cs), barium (Ba), iridium (Ir), lead (Pb), bismuth (Bi), polonium (Po), radon (Rn), radium (Ra), thorium (Th), and uranium (U).


Subject(s)
Occupational Exposure/prevention & control , Occupational Health/standards , Radiation Exposure/prevention & control , Radiation Monitoring/standards , Radiation Protection/standards , Radioisotopes/adverse effects , Dose-Response Relationship, Radiation , Humans , Radiation Exposure/standards , Radiation, Ionizing , Risk Assessment
7.
Ann ICRP ; 45(1 Suppl): 202-14, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27044362

ABSTRACT

Internal doses are calculated on the basis of knowledge of intakes and/or measurements of activity in bioassay samples, typically using reference biokinetic and dosimetric models recommended by the International Commission on Radiological Protection (ICRP). These models describe the behaviour of the radionuclides after ingestion, inhalation, and absorption to the blood, and the absorption of the energy resulting from their nuclear transformations. They are intended to be used mainly for the purpose of radiological protection: that is, optimisation and demonstration of compliance with dose limits. These models and parameter values are fixed by convention and are not subject to uncertainty. Over the past few years, ICRP has devoted a considerable amount of effort to the revision and improvement of models to make them more physiologically realistic. ICRP models are now sufficiently sophisticated for calculating organ and tissue absorbed doses for scientific purposes, and in many other areas, including toxicology, pharmacology and medicine. In these specific cases, uncertainties in parameters and variability between individuals need to be taken into account.


Subject(s)
Radiation Dosage , Radiation Exposure , Radiation Protection , Radioisotopes/metabolism , Radiometry/methods , Humans , International Agencies , Models, Theoretical , Uncertainty
8.
IEEE Int Ultrason Symp ; 20162016 Sep.
Article in English | MEDLINE | ID: mdl-28593033

ABSTRACT

Acoustic radiation force has many applications. One of the related technologies is the ability to noninvasively expel stones from the kidney. To optimize the procedure it is important to develop theoretical approaches that can provide rapid calculations of the radiation force depending in stone size and elastic properties, together with ultrasound beam diameter, intensity, and frequency. We hypothesize that the radiation force nonmonotonically depends on the ratio between the acoustic beam width and stone diameter because of coupling between the acoustic wave in the fluid and shear waves in the stone. Testing this hypothesis by considering a spherical stone and a quasi-Gaussian beam was performed in the current work. The calculation of the radiation force was conducted for elastic spheres of two types. Dependence of the magnitude of the radiation force on the beam diameter at various fixed values of stone diameters was modeled. In addition to using real material properties, speed of shear wave in the stone was varied to reveal the importance of shear waves in the stone. It was found that the radiation force reaches its maximum at the beamwidth comparable to the stone diameter; the gain in the force magnitude can reach 40% in comparison with the case of a narrow beam.

9.
Ann ICRP ; 45(3-4): 7-349, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28657340

ABSTRACT

Abstract ­: The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988b) and Publication 68 (ICRP, 1994b). In addition, new data are available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. Part 1 of the OIR series has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. The following publications in the OIR series (Parts 2­5) will provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The electronic annex that accompanies the OIR series of reports contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. The present publication provides the above data for the following elements: hydrogen (H), carbon (C), phosphorus (P), sulphur (S), calcium (Ca), iron (Fe), cobalt (Co), zinc (Zn), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), and technetium (Tc).


Subject(s)
Occupational Exposure/prevention & control , Radiation Exposure/prevention & control , Radiation Monitoring/standards , Radiation Protection/standards , Radioisotopes , Dose-Response Relationship, Radiation , Humans , Occupational Health , Radiation, Ionizing , Radiometry , Risk Assessment , Risk Factors
10.
Ann ICRP ; 44(2): 5-188, 2015 09.
Article in English | MEDLINE | ID: mdl-26494836

ABSTRACT

Abstract ­: This report is the first in a series of reports replacing Publications 30 and 68 to provide revised dose coefficients for occupational intakes of radionuclides by inhalation and ingestion. The revised dose coefficients have been calculated using the Human Alimentary Tract Model (Publication 100) and a revision of the Human Respiratory Tract Model (Publication 66) that takes account of more recent data. In addition, information is provided on absorption into blood following inhalation and ingestion of different chemical forms of elements and their radioisotopes. In selected cases, it is judged that the data are sufficient to make material-specific recommendations. Revisions have been made to many of the models that describe the systemic biokinetics of radionuclides absorbed into blood, making them more physiologically realistic representations of uptake and retention in organs and tissues, and excretion. The reports in this series provide data for the interpretation of bioassay measurements as well as dose coefficients, replacing Publications 54 and 78. In assessing bioassay data such as measurements of whole-body or organ content, or urinary excretion, assumptions have to be made about the exposure scenario, including the pattern and mode of radionuclide intake, physical and chemical characteristics of the material involved, and the elapsed time between the exposure(s) and measurement. This report provides some guidance on monitoring programmes and data interpretation.


Subject(s)
Occupational Exposure/prevention & control , Radiation Monitoring , Radiation Protection/standards , Dose-Response Relationship, Radiation , Humans , Occupational Health , Radiation Protection/methods , Radiation, Ionizing , Radiometry
11.
Radiat Prot Dosimetry ; 157(4): 499-514, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23887272

ABSTRACT

The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.


Subject(s)
Lung/radiation effects , Radon Daughters/analysis , Radon/analysis , Absorption , Aerosols , Air Pollutants, Radioactive/analysis , Air Pollutants, Radioactive/metabolism , Animals , Bismuth/analysis , Female , Humans , Inhalation , Ions , Kinetics , Lead/analysis , Male , Occupational Exposure , Polonium/analysis , Radiation Dosage , Radiation Protection/methods , Radiometry/methods , Rats , Respiratory System/radiation effects , Risk Assessment
12.
Exp Lung Res ; 37(2): 109-29, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21142810

ABSTRACT

Retention in the extrathoracic airways, and clearance by nose blowing, of monodisperse indium-111-labeled polystyrene particles were followed for at least 2 days after inhalation by healthy volunteers. Nine volunteers inhaled 3-µm aerodynamic diameter particles while sitting at rest, whereas subgroups of 3 or 4 inhaled 1.5-µm or 6-µm particles at rest, and 3-µm or 6-µm particles while performing light exercise. Retention of the initial extrathoracic deposit (IETD) in the extrathoracic airways was described by 4 components: on average 19% IETD cleared by nose blowing; 15% was swallowed before the first measurement, a few minutes after inhalation; 21% cleared by mucociliary action between the first measurement and about an hour later; and 45% subsequently cleared by mucociliary action. Geometric mean times in which 50% and 90% of IETD cleared were 2.5 and 22 hours. The geometric mean retention fractions at 24 and 48 hours were 7% and 2.4% IETD, respectively. No clear trends were found between parameters describing retention and any related to deposition (e.g., particle size). However, the fraction cleared by nose blowing was related to the frequency of nose blowing and therefore appears to be a characteristic of the individual.


Subject(s)
Mucociliary Clearance/physiology , Nasal Mucosa/metabolism , Polystyrenes/pharmacokinetics , Administration, Inhalation , Adult , Exercise , Female , Humans , Indium Radioisotopes/chemistry , Male , Particle Size , Respiration
13.
Radiat Prot Dosimetry ; 144(1-4): 353-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21036808

ABSTRACT

New information on particle retention of inhaled insoluble material indicates that the ICRP Human Respiratory Tract Model (HRTM) significantly underestimates long-term retention in the lungs. In a previous paper, the information from three studies was reviewed, and a model developed to predict particle retention in the lungs of coal miners was adapted in order to obtain parameter values for general use to predict particle retention in the alveolar-interstitial (AI) region. The model is physiologically based and simpler than the HRTM, requiring two instead of three compartments to model the AI region. The main difference from the HRTM AI model is that a significant fraction, about 35 %, of the AI deposit of insoluble material remains sequestered in the interstitium. The new model is here applied to the analysis of two well-known contamination cases with several years of follow-up data.


Subject(s)
Lung/drug effects , Lung/pathology , Lung/radiation effects , Pulmonary Alveoli/pathology , Americium/analysis , Humans , Kinetics , Lymph Nodes/pathology , Macrophages/pathology , Mining , Models, Biological , Occupational Exposure , Particle Size , Plutonium/analysis , Probability , Reproducibility of Results , Tissue Distribution
14.
J Radiol Prot ; 30(3): 491-512, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20826887

ABSTRACT

Better information is available now on long-term particle retention in the human lungs than there was in 1994, when the human respiratory tract model (HRTM) was adopted by the International Commission on Radiological Protection (ICRP). Three recent studies are especially useful because they provide such information for groups of people who inhaled very similar aerosols. For all three the HRTM significantly underestimates lung retention of insoluble material. The purpose of this work was to improve the modelling of long-term retention in the deep lung. A simple physiologically based model developed to predict lung and lymph node particle retention in coal miners was found to represent lung retention in these studies adequately. Instead of the three alveolar-interstitial (AI) compartments in the HRTM, it has an alveolar compartment which clears to the bronchial tree and to a second compartment, representing the interstitium, which clears only to lymph nodes. The main difference from the HRTM AI model is that a significant fraction of the AI deposit is sequestered in the interstitium. To obtain default parameter values for general use, the model was fitted to data from the three recent studies, and also the experimental data used in development of the HRTM to define particle transport from the AI region for the first year after intake. The result of the analysis is that about 40% of the AI deposit of insoluble particles is sequestered in the interstitium and the remaining fraction is cleared to the ciliated airways with a half-time of about 300 days. For some long-lived radionuclides in relatively insoluble form (type S), this increased retention increases the lung dose per unit intake by 50-100% compared to the HRTM value.


Subject(s)
Models, Biological , Particulate Matter/pharmacokinetics , Pulmonary Alveoli/metabolism , Radioisotopes/pharmacokinetics , Computer Simulation , Humans , Lung , Metabolic Clearance Rate , Tissue Distribution
15.
Acoust Phys ; 56(3): 354-363, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20582159

ABSTRACT

Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.

16.
Radiat Environ Biophys ; 49(2): 203-12, 2010 May.
Article in English | MEDLINE | ID: mdl-20131061

ABSTRACT

Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates and long-term dissolution for plutonium compounds, a re-evaluation of long-term binding of dissolved plutonium, and further consideration of modeling for plutonium absorbed to blood from the lungs.


Subject(s)
Occupational Exposure/adverse effects , Plutonium/adverse effects , Radiometry/methods , Autopsy , Humans , Inhalation , International Agencies , Lung/metabolism , Lung/pathology , Lung/physiopathology , Lung/radiation effects , Models, Biological , Plutonium/metabolism , Plutonium/urine , Radiation Dosage , Radiation Protection , Uncertainty
17.
Acoust Phys ; 55(4-5): 463-476, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-20161349

ABSTRACT

In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

18.
Radiat Prot Dosimetry ; 131(1): 28-33, 2008.
Article in English | MEDLINE | ID: mdl-18757895

ABSTRACT

The CONRAD Project is a Coordinated Network for Radiation Dosimetry funded by the European Commission 6th Framework Programme. The activities developed within CONRAD Work Package 5 ('Coordination of Research on Internal Dosimetry') have contributed to improve the harmonisation and reliability in the assessment of internal doses. The tasks carried out included a study of uncertainties and the refinement of the IDEAS Guidelines associated with the evaluation of doses after intakes of radionuclides. The implementation and quality assurance of new biokinetic models for dose assessment and the first attempt to develop a generic dosimetric model for DTPA therapy are important WP5 achievements. Applications of voxel phantoms and Monte Carlo simulations for the assessment of intakes from in vivo measurements were also considered. A Nuclear Emergency Monitoring Network (EUREMON) has been established for the interpretation of monitoring data after accidental or deliberate releases of radionuclides. Finally, WP5 group has worked on the update of the existing IDEAS bibliographic, internal contamination and case evaluation databases. A summary of CONRAD WP5 objectives and results is presented here.


Subject(s)
Radiation Dosage , Radiation Monitoring , Radiometry , Radiotherapy Dosage , Research , Computer Simulation , Databases as Topic , Humans , Models, Theoretical , Monte Carlo Method , Phantoms, Imaging , Quality Assurance, Health Care , Radioisotopes/administration & dosage , Radiometry/instrumentation , Uncertainty
19.
Radiat Prot Dosimetry ; 131(1): 34-9, 2008.
Article in English | MEDLINE | ID: mdl-18718961

ABSTRACT

The work of Task Group 5.1 (uncertainty studies and revision of IDEAS guidelines) and Task Group 5.5 (update of IDEAS databases) of the CONRAD project is described. Scattering factor (SF) values (i.e. measurement uncertainties) have been calculated for different radionuclides and types of monitoring data using real data contained in the IDEAS Internal Contamination Database. Based upon this work and other published values, default SF values are suggested. Uncertainty studies have been carried out using both a Bayesian approach as well as a frequentist (classical) approach. The IDEAS guidelines have been revised in areas relating to the evaluation of an effective AMAD, guidance is given on evaluating wound cases with the NCRP wound model and suggestions made on the number and type of measurements required for dose assessment.


Subject(s)
Databases as Topic , Radiation Monitoring , Radioisotopes/administration & dosage , Bayes Theorem , Creatinine/radiation effects , Creatinine/urine , Feces/chemistry , Guidelines as Topic , Humans , Models, Biological , Radiation Injuries/physiopathology , Radioisotopes/chemistry , Scattering, Radiation , Specific Gravity/radiation effects , Tritium/radiation effects , Tritium/urine , Uncertainty , Urine/chemistry
20.
Health Phys ; 95(3): 300-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18695411

ABSTRACT

Measurements of uranium excreted in urine have been widely used to monitor possible exposures to depleted uranium (DU). This paper describes a comprehensive probabilistic uncertainty analysis of doses determined retrospectively from measurements of DU in urine. Parametric uncertainties in the International Commission on Radiological Protection (ICRP) Human Respiratory Tract Model (HRTM) and ICRP systemic model for uranium were considered in the analysis, together with uncertainties in an alternative model for particle removal from the lungs. Probability distributions were assigned to HRTM parameters based on uncertainties documented in ICRP Publication 66 and elsewhere, including the Capstone study of aerosols produced after DU penetrator impacts. Uncertainties in the uranium systemic model were restricted to transfer rates having the greatest effect on urinary excretion, and hence retrospective dose assessments, over the measurement times considered (10-10(4) d). The overall uncertainty on dose (the ratio of the upper and lower quantiles, q0.975/q0.025) was estimated to be about a factor of 50 at 10 days after intake and about a factor of 10 at 10(3)-10(4) d. The dose to the lung dominated the committed effective dose, with the lung absorption parameters, particularly the slow dissolution rate, ss, dominating the overall uncertainty. The median dose determined from a measurement of 1 ng DU, collected in urine in a 24-h period, varied from 0.1 microSv at 10 d to about 1 mSv at 10(4) d. Despite the large uncertainties, the upper q0.975 quantile for the assessed dose was below 1 mSv up to 5,000 d.


Subject(s)
Firearms , Models, Biological , Models, Statistical , Radiometry/methods , Uranium/urine , Administration, Inhalation , Body Burden , Computer Simulation , Data Interpretation, Statistical , Humans , Radiation Dosage , Relative Biological Effectiveness , Reproducibility of Results , Sensitivity and Specificity , Uranium/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...