Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(23): 231102, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868496

ABSTRACT

We use data from the T-SAGE instrument on board the MICROSCOPE space mission to search for Lorentz violation in matter-gravity couplings as described by the Lorentz violating standard model extension (SME) coefficients (a[over ¯]_{eff})_{µ}^{w}, where (µ=T, X, Y, Z) and (w=e, p, n) for the electron, proton, and neutron. One of the phenomenological consequences of a nonzero value of those coefficients is that test bodies of different composition fall differently in an external gravitational field. This is similar to "standard" tests of the universality of free fall, but with a specific signature that depends on the orbital velocity and rotation of Earth. We analyze data from five measurement sessions of MICROSCOPE spread over a year finding no evidence for such a signature, but setting constraints on linear combinations of the SME coefficients that improve on best previous results by 1 to 2 orders of magnitude. Additionally, our independent linear combinations are different from previous ones, which increases the diversity of available constraints, paving the way towards a full decorrelation of the individual coefficients.

2.
Phys Rev Lett ; 117(7): 071102, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563946

ABSTRACT

Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9} m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.

SELECTION OF CITATIONS
SEARCH DETAIL
...