Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 193(12): 776, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34746965

ABSTRACT

Long-term monitoring of forest soils is necessary to understand the effects of continued environmental change, including climate change, atmospheric deposition of metals, and, in many regions, recovery from acidic precipitation. A monitoring program was initiated in 2002 at five protected forest sites, primarily Spodosol soils, in Vermont, northeastern USA. Every 5 years, ten soil pits were sampled from random subplots in a 50 × 50-m plot at each site. Samples were taken by genetic horizon and, to reduce variability and improve comparability, from four specific layers: the combined Oi/Oe layer, the combined Oa/A layer, the top 10 cm of the B horizon, and 60-70 cm below the soil surface (usually the C horizon). The samples were archived and a subset analyzed for carbon, nitrogen, and exchangeable cations. After four sampling campaigns, the average coefficients of variation (CVs) at each site had a broad range, 10.7% for carbon in the Oa/A horizon to 84.3% for exchangeable Ca2+ in the B horizon. An investigation of variability within the upper 10 cm of the B horizon across a 90-cm soil pit face showed similar CVs to the entire site, emphasizing the need for consistent and careful sampling. After 15 years, temporal trends were significant in the Oa/A and B horizons at two of the five sites, with one site showing an increase in carbon concentration in both layers along with increases in both exchangeable Ca2+ and Al3+ in the B horizon, perhaps linked to recovery from acidification. The monitoring program plans to continue at 5-year intervals for the next century.


Subject(s)
Soil , Trees , Environmental Monitoring , Forests , Vermont
2.
PLoS One ; 13(5): e0195966, 2018.
Article in English | MEDLINE | ID: mdl-29734332

ABSTRACT

The design of a precipitation monitoring network must balance the demand for accurate estimates with the resources needed to build and maintain the network. If there are changes in the objectives of the monitoring or the availability of resources, network designs should be adjusted. At the Hubbard Brook Experimental Forest in New Hampshire, USA, precipitation has been monitored with a network established in 1955 that has grown to 23 gauges distributed across nine small catchments. This high sampling intensity allowed us to simulate reduced sampling schemes and thereby evaluate the effect of decommissioning gauges on the quality of precipitation estimates. We considered all possible scenarios of sampling intensity for the catchments on the south-facing slope (2047 combinations) and the north-facing slope (4095 combinations), from the current scenario with 11 or 12 gauges to only 1 gauge remaining. Gauge scenarios differed by as much as 6.0% from the best estimate (based on all the gauges), depending on the catchment, but 95% of the scenarios gave estimates within 2% of the long-term average annual precipitation. The insensitivity of precipitation estimates and the catchment fluxes that depend on them under many reduced monitoring scenarios allowed us to base our reduction decision on other factors such as technician safety, the time required for monitoring, and co-location with other hydrometeorological measurements (snow, air temperature). At Hubbard Brook, precipitation gauges could be reduced from 23 to 10 with a change of <2% in the long-term precipitation estimates. The decision-making approach illustrated in this case study is applicable to the redesign of monitoring networks when reduction of effort seems warranted.


Subject(s)
Decision Making , Environmental Monitoring/methods , Rain , Snow , Forests , Seasons , Spatial Analysis , Uncertainty , Volatilization
3.
J Vis Exp ; (117)2016 11 25.
Article in English | MEDLINE | ID: mdl-27911419

ABSTRACT

Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.


Subject(s)
Environmental Monitoring/methods , Forests , Soil/chemistry , Soil Pollutants
4.
Environ Sci Technol ; 49(22): 13103-11, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26495963

ABSTRACT

Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO4(2-) deposition of 5.7-76%, over intervals of 8-24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO4(2-) deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.


Subject(s)
Acids/chemistry , Forests , Soil/chemistry , Aluminum/analysis , Atmosphere/chemistry , Canada , New England , Soil Pollutants/analysis
5.
Proc Natl Acad Sci U S A ; 111(46): 16413-8, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25368188

ABSTRACT

Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ(15)NNO3 and δ(18)ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments.


Subject(s)
Denitrification , Forests , Nitrogen Isotopes/metabolism , Oxygen Isotopes/metabolism , Seasons , Trees/metabolism , Ammonium Compounds/analysis , Climate , Connecticut , Denitrification/physiology , Fresh Water/analysis , Groundwater/analysis , Nitrates/analysis , Nitrites/analysis , Rivers , Soil/chemistry
6.
Proc Natl Acad Sci U S A ; 111(19): 7030-5, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24753575

ABSTRACT

By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.


Subject(s)
Cities , Ecosystem , Environmental Monitoring/methods , Models, Theoretical , Rivers/chemistry , Carbon/analysis , Fresh Water/chemistry , Humans , Silicon Dioxide/analysis , Sodium/analysis
8.
J Environ Qual ; 42(3): 623-39, 2013.
Article in English | MEDLINE | ID: mdl-23673928

ABSTRACT

Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest ecosystems through repeated measurements are largely nascent and uncoordinated. In eastern North America, repeated soil sampling has begun to provide valuable information on environmental problems such as air pollution. This review synthesizes the current state of the science to further the development and use of soil resampling as an integral method for recording and understanding environmental change in forested settings. The origins of soil resampling reach back to the 19th century in England and Russia. The concepts and methodologies involved in forest soil resampling are reviewed and evaluated through a discussion of how temporal and spatial variability can be addressed with a variety of sampling approaches. Key resampling studies demonstrate the type of results that can be obtained through differing approaches. Ongoing, large-scale issues such as recovery from acidification, long-term N deposition, C sequestration, effects of climate change, impacts from invasive species, and the increasing intensification of soil management all warrant the use of soil resampling as an essential tool for environmental monitoring and assessment. Furthermore, with better awareness of the value of soil resampling, studies can be designed with a long-term perspective so that information can be efficiently obtained well into the future to address problems that have not yet surfaced.


Subject(s)
Climate Change , Ecosystem , Air Pollution , Environmental Monitoring , Forests , Soil , Trees
9.
Proc Natl Acad Sci U S A ; 110(15): 5999-6003, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530239

ABSTRACT

Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial levels through natural weathering. An unexpected outcome of the Ca amendment was a change in watershed hydrology; annual evapotranspiration increased by 25%, 18%, and 19%, respectively, for the 3 y following treatment before returning to pretreatment levels. During this period, the watershed retained Ca from the wollastonite, indicating a watershed-scale fertilization effect on transpiration. That response is unique in being a measured manipulation of watershed runoff attributable to fertilization, a response of similar magnitude to effects of deforestation. Our results suggest that past and future changes in available soil Ca concentrations have important and previously unrecognized implications for the water cycle.


Subject(s)
Calcium Compounds/metabolism , Silicates/metabolism , Soil/chemistry , Trees/physiology , Water/chemistry , Biomass , Conservation of Natural Resources , Ecosystem , Environmental Monitoring , Hydrogen-Ion Concentration , New Hampshire , Time Factors
10.
Ecol Appl ; 19(6): 1454-66, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19769094

ABSTRACT

Sugar maple, Acer saccharum, decline disease is incited by multiple disturbance factors when imbalanced calcium (Ca), magnesium (Mg), and manganese (Mn) act as predisposing stressors. Our objective in this study was to determine whether factors affecting sugar maple health also affect growth as estimated by basal area increment (BAI). We used 76 northern hardwood stands in northern Pennsylvania, New York, Vermont, and New Hampshire, USA, and found that sugar maple growth was positively related to foliar concentrations of Ca and Mg and stand level estimates of sugar maple crown health during a high stress period from 1987 to 1996. Foliar nutrient threshold values for Ca, Mg, and Mn were used to analyze long-term BAI trends from 1937 to 1996. Significant (P < or = 0.05) nutrient threshold-by-time interactions indicate changing growth in relation to nutrition during this period. Healthy sugar maples sampled in the 1990s had decreased growth in the 1970s, 10-20 years in advance of the 1980s and 1990s decline episode in Pennsylvania. Even apparently healthy stands that had no defoliation, but had below-threshold amounts of Ca or Mg and above-threshold Mn (from foliage samples taken in the mid 1990s), had decreasing growth by the 1970s. Co-occurring black cherry, Prunus serotina, in a subset of the Pennsylvania and New York stands, showed opposite growth responses with greater growth in stands with below-threshold Ca and Mg compared with above-threshold stands. Sugar maple growing on sites with the highest concentrations of foliar Ca and Mg show a general increase in growth from 1937 to 1996 while other stands with lower Ca and Mg concentrations show a stable or decreasing growth trend. We conclude that acid deposition induced changes in soil nutrient status that crossed a threshold necessary to sustain sugar maple growth during the 1970s on some sites. While nutrition of these elements has not been considered in forest management decisions, our research shows species specific responses to Ca and Mg that may reduce health and growth of sugar maple or change species composition, if not addressed.


Subject(s)
Acer/growth & development , Soil/analysis , Stress, Physiological , Acer/metabolism , Climate , Geography , Mid-Atlantic Region , New England , Plant Leaves/metabolism , Prunus/growth & development , Prunus/metabolism
11.
Sci Total Environ ; 404(2-3): 262-8, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18456308

ABSTRACT

Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The delta(34)S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5 per thousand in early spring to about 10 per thousand in early fall. During high-flow events, delta(34)S values typically decreased by 1 to 3 per thousand from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (delta(34)S approximately 6-14 per thousand); (2) contributions of pedogenic sulfate (delta(34)S approximately 5-6 per thousand) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.


Subject(s)
Environmental Monitoring , Sulfates/analysis , Sulfur Isotopes/analysis , Trees , Water Pollutants, Chemical/analysis , Geologic Sediments/analysis , Geologic Sediments/chemistry , Oxidation-Reduction , Seasons , Sulfides/analysis , Vermont , Water Movements
12.
Environ Sci Technol ; 39(7): 2004-10, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15871230

ABSTRACT

Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition.


Subject(s)
Acid Rain/toxicity , Climate , Picea/drug effects , Picea/growth & development , Soil/analysis , Aluminum/chemistry , Aluminum/pharmacokinetics , Biological Availability , Calcium/chemistry , Calcium/pharmacokinetics , Carbon/metabolism , Cations/metabolism , Hydrogen-Ion Concentration , Longitudinal Studies , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...