Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plant Direct ; 7(9): e530, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37711644

ABSTRACT

High cellular pigment levels in dense microalgal cultures contribute to excess light absorption. To improve photosynthetic yields in the marine microalga Picochlorum celeri, CAS9 gene editing was used to target the molecular chaperone cpSRP43. Depigmented strains (>50% lower chlorophyll) were generated, with proteomics showing attenuated levels of most light harvesting complex (LHC) proteins. Gene editing generated two types of cpSRP43 transformants with distinct lower pigment phenotypes: (i) a transformant (Δsrp43) with both cpSRP43 diploid alleles modified to encode non-functional polypeptides and (ii) a transformant (STR30309) with a 3 nt in-frame insertion in one allele at the CAS9 cut site (non-functional second allele), leading to expression of a modified cpSRP43. STR30309 has more chlorophyll than Δsrp43 but substantially less than wild type. To further decrease light absorption by photosystem I in STR30309, CAS9 editing was used to stack in disruptions of both LHCA6 and LHCA7 to generate STR30843, which has higher (5-24%) productivities relative to wild type in solar-simulating bioreactors. Maximal productivities required frequent partial harvests throughout the day. For STR30843, exemplary diel bioreactor yields of ~50 g m-2 day-1 were attained. Our results demonstrate diel productivity gains in P. celeri by lowering pigment levels.

2.
Eur Phys J C Part Fields ; 78(11): 962, 2018.
Article in English | MEDLINE | ID: mdl-30881213

ABSTRACT

Since its start of data taking, the LHC has provided an impressive wealth of information on the quark and gluon structure of the proton. Indeed, modern global analyses of parton distribution functions (PDFs) include a wide range of LHC measurements of processes such as the production of jets, electroweak gauge bosons, and top quark pairs. In this work, we assess the ultimate constraining power of LHC data on the PDFs that can be expected from the complete dataset, in particular after the High-Luminosity (HL) phase, starting in around 2025. The huge statistics of the HL-LHC, delivering L = 3 ab - 1 to ATLAS and CMS and L = 0.3 ab - 1 to LHCb, will lead to an extension of the kinematic coverage of PDF-sensitive measurements as well as to an improvement in their statistical and systematic uncertainties. Here we generate HL-LHC pseudo-data for different projections of the experimental uncertainties, and then quantify the resulting constraints on the PDF4LHC15 set by means of the Hessian profiling method. We find that HL-LHC measurements can reduce PDF uncertainties by up to a factor of 2 to 4 in comparison to state-of-the-art fits, leading to few-percent uncertainties for important observables such as the Higgs boson transverse momentum distribution via gluon-fusion. Our results illustrate the significant improvement in the precision of PDF fits achievable from hadron collider data alone, and motivate the continuation of the ongoing successful program of PDF-sensitive measurements by the LHC collaborations.

3.
Genetics ; 181(3): 889-905, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19087952

ABSTRACT

The Chlamydomonas reinhardtii PSR1 gene is required for proper acclimation of the cells to phosphorus (P) deficiency. P-starved psr1 mutants show signs of secondary sulfur (S) starvation, exemplified by the synthesis of extracellular arylsulfatase and the accumulation of transcripts encoding proteins involved in S scavenging and assimilation. Epistasis analysis reveals that induction of the S-starvation responses in P-limited psr1 cells requires the regulatory protein kinase SNRK2.1, but bypasses the membrane-targeted activator, SAC1. The inhibitory kinase SNRK2.2 is necessary for repression of S-starvation responses during both nutrient-replete growth and P limitation; arylsulfatase activity and S deficiency-responsive genes are partially induced in the P-deficient snrk2.2 mutants and become fully activated in the P-deficient psr1snrk2.2 double mutant. During P starvation, the sac1snrk2.2 double mutants or the psr1sac1snrk2.2 triple mutants exhibit reduced arylsulfatase activity compared to snrk2.2 or psr1snrk2.2, respectively, but the sac1 mutation has little effect on the abundance of S deficiency-responsive transcripts in these strains, suggesting a post-transcriptional role for SAC1 in elicitation of S-starvation responses. Interestingly, P-starved psr1snrk2.2 cells bleach and die more rapidly than wild-type or psr1 strains, suggesting that activation of S-starvation responses during P deprivation is deleterious to the cell. From these results we infer that (i) P-deficient growth causes some internal S limitation, but the S-deficiency responses are normally inhibited during acclimation to P deprivation; (ii) the S-deficiency responses are not completely suppressed in P-deficient psr1 cells and consequently these cells synthesize some arylsulfatase and exhibit elevated levels of transcripts for S-deprivation genes; and (iii) this increased expression is controlled by regulators that modulate transcription of S-responsive genes during S-deprivation conditions. Overall, the work strongly suggests integration of the different circuits that control nutrient-deprivation responses in Chlamydomonas.


Subject(s)
Chlamydomonas/genetics , Chlamydomonas/physiology , Genes, Protozoan/genetics , Phosphorus/deficiency , Sulfur/deficiency , Animals , Arylsulfatases/metabolism , Chlamydomonas/cytology , Chlamydomonas/metabolism , DNA-Binding Proteins/metabolism , Epistasis, Genetic , Mutation , Nuclear Proteins/metabolism , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Sulfates/metabolism
4.
Photochem Photobiol ; 84(6): 1410-20, 2008.
Article in English | MEDLINE | ID: mdl-19067963

ABSTRACT

To cope with a rapidly fluctuating light environment, vascular plants and algae have evolved a photoprotective mechanism that serves to downregulate the transfer of excitation energy in the light-harvesting complexes to the photosynthetic reaction centers. This process dissipates excess excitation energy in the chlorophyll pigment bed by a nonradiative pathway. Since this pathway competes with and therefore quenches chlorophyll fluoresence in a nonphotochemical manner, it has been termed Non-photochemical Quenching (NPQ). For many years, cyanobacteria were not considered capable of performing NPQ as a photoprotective mechanism. Instead, the redistribution of the phycobilisome (PBS) light-harvesting antenna between reaction centers by a process called state transitions was considered the major means of regulating the utilization of harvested light energy. Recently, it was demonstrated that cyanobacteria are able to use NPQ as one component of their photoprotective strategies. Cyanobacteria exhibit significant NPQ during nutrient-replete growth, but it becomes a more prominent means of managing absorbed excitation energy when the cells experience iron starvation. Rapid progress in understanding the molecular mechanism of cyanobacterial NPQ has revealed a process that is very distinct from the functionally analogous process in plants and algae. Cyanobacterial NPQ involves the absorption of blue light by a carotenoid binding protein, termed the Orange Carotenoid Protein, and most likely involves quenching in the PBS core. In this study, we summarize work leading to the discovery of NPQ in cyanobacteria and the elucidation of molecular mechanisms associated with this important photoprotective process.


Subject(s)
Cyanobacteria/enzymology , Light-Harvesting Protein Complexes/metabolism , Iron/metabolism , Light , Photochemistry , Photosynthesis
5.
Proc Natl Acad Sci U S A ; 105(22): 7881-6, 2008 Jun 03.
Article in English | MEDLINE | ID: mdl-18511560

ABSTRACT

Adaptation of photosynthesis in marine environment has been examined in two strains of the green, picoeukaryote Ostreococcus: OTH95, a surface/high-light strain, and RCC809, a deep-sea/low-light strain. Differences between the two strains include changes in the light-harvesting capacity, which is lower in OTH95, and in the photoprotection capacity, which is enhanced in OTH95. Furthermore, RCC809 has a reduced maximum rate of O(2) evolution, which is limited by its decreased photosystem I (PSI) level, a possible adaptation to Fe limitation in the open oceans. This decrease is, however, accompanied by a substantial rerouting of the electron flow to establish an H(2)O-to-H(2)O cycle, involving PSII and a potential plastid plastoquinol terminal oxidase. This pathway bypasses electron transfer through the cytochrome b(6)f complex and allows the pumping of "extra" protons into the thylakoid lumen. By promoting the generation of a large DeltapH, it facilitates ATP synthesis and nonphotochemical quenching when RCC809 cells are exposed to excess excitation energy. We propose that the diversion of electrons to oxygen downstream of PSII, but before PSI, reflects a common and compulsory strategy in marine phytoplankton to bypass the constraints imposed by light and/or nutrient limitation and allow successful colonization of the open-ocean marine environment.


Subject(s)
Acclimatization , Chlorophyta/physiology , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Acclimatization/radiation effects , Chlorophyta/enzymology , Chlorophyta/radiation effects , Cytochrome b6f Complex/metabolism , Electron Transport , Light , Oxygen/metabolism , Photosynthesis/radiation effects , Seawater
6.
Biochim Biophys Acta ; 1777(3): 269-76, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18241667

ABSTRACT

Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.


Subject(s)
Iron/metabolism , Oxidoreductases/metabolism , Oxygen/metabolism , Photosynthesis , Synechococcus/metabolism , Thylakoids/metabolism , Adaptation, Physiological , Chlorophyll/metabolism , Electron Transport , Enzyme Inhibitors/pharmacology , Iron Deficiencies , Oxidation-Reduction , Oxidoreductases/antagonists & inhibitors , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Propyl Gallate/pharmacology , Seawater/chemistry , Synechococcus/drug effects , Synechococcus/enzymology , Synechococcus/radiation effects , Thylakoids/drug effects , Thylakoids/enzymology , Thylakoids/radiation effects , Time Factors
7.
Appl Environ Microbiol ; 73(13): 4268-78, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17483258

ABSTRACT

Thermophilic cyanobacteria of the genus Synechococcus are major contributors to photosynthetic carbon fixation in the photic zone of microbial mats in Octopus Spring, Yellowstone National Park. Synechococcus OS-B' was characterized with regard to the ability to acclimate to a range of different light irradiances; it grows well at 25 to 200 micromol photons m(-2) s(-1) but dies when the irradiance is increased to 400 micromol photons m(-2) s(-1). At 200 micromol photons m(-2) s(-1) (high light [HL]), we noted several responses that had previously been associated with HL acclimation of cyanobacteria, including cell bleaching, reduced levels of phycobilisomes and chlorophyll, and elevated levels of a specific carotenoid. Synechococcus OS-B' synthesizes the carotenoids zeaxanthin and beta,beta-carotene and a novel myxol-anhydrohexoside. Interestingly, 77-K fluorescence emission spectra suggest that Synechococcus OS-B' accumulates very small amounts of photosystem II relative to that of photosystem I. This ratio further decreased at higher growth irradiances, which may reflect potential photodamage following exposure to HL. We also noted that HL caused reduced levels of transcripts encoding phycobilisome components, particularly that for CpcH, a 20.5-kDa rod linker polypeptide. There was enhanced transcript abundance of genes encoding terminal oxidases, superoxide dismutase, tocopherol cyclase, and phytoene desaturase. Genes encoding the photosystem II D1:1 and D1:2 isoforms (psbAI and psbAII/psbAIII, respectively) were also regulated according to the light regimen. The results are discussed in the context of how Synechococcus OS-B' may cope with high light irradiances in the high-temperature environment of the microbial mat.


Subject(s)
Fresh Water/microbiology , Synechococcus/isolation & purification , Synechococcus/radiation effects , Base Sequence , Carotenoids/biosynthesis , DNA Primers/genetics , DNA, Bacterial/genetics , Ecosystem , Genes, Bacterial , Photobiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Pigments, Biological/metabolism , Synechococcus/genetics , Synechococcus/metabolism , Temperature , Tocopherols/metabolism , Wyoming
8.
Environ Microbiol ; 8(5): 827-35, 2006 May.
Article in English | MEDLINE | ID: mdl-16623740

ABSTRACT

The transcription of S-PM2 phage following infection of Synechococcus sp. WH7803, a marine cyanobacterium, was analysed by quantitative real-time PCR. Unlike the distantly related coliphage T4, there were only two (early and late) instead of three (early, middle and late) classes of transcripts during the developmental cycle of the phage. This difference is consistent with the absence from the S-PM2 genome of T4-like middle mode promoter sequences and the transcription factors associated with their recognition. Phage S-PM2 carries the 'photosynthetic' genes psbA and psbD that encode homologues of the host photosystem II proteins D1 and D2. Transcripts of the phage psbA gene appeared soon after infection and remained at high levels until lysis. Throughout the course of infection, the photosynthetic capacity of the cells remained constant. A considerable transient increase in the abundance of the host psbA transcripts occurred shortly after infection, suggesting that the host responds to the trauma of phage infection in a similar way as it does to a variety of other environmental stresses. The very substantial transcription of the phage psbA gene during the latter phase of phage infection suggests that S-PM2 has acquired this cellular gene to ensure that D1 levels and thus photosynthesis are fully maintained until the infected cell finally lyses. Unexpectedly, transcripts of a phage-encoded S-layer protein gene were among the earliest and most abundant detected, suggesting that this partial homologue of a host protein plays an important role in the S-PM2 infection process.


Subject(s)
Bacteriophages/genetics , Cyanobacteria/genetics , Gene Expression Regulation, Viral/genetics , Photosynthesis/genetics , Transcription, Genetic , Cyanobacteria/virology , Genome, Viral , Photosystem II Protein Complex/genetics , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction
9.
J Biol Chem ; 280(50): 41165-70, 2005 Dec 16.
Article in English | MEDLINE | ID: mdl-16215228

ABSTRACT

The twin-arginine translocation (Tat) system transports folded proteins across the chloroplast thylakoid membrane and bacterial plasma membrane. In vitro import assays have pointed to a key role for the thylakoid delta pH in the initial assembly of the full translocon from two subcomplexes; more generally, the delta pH is believed to provide the overall driving force for translocation. Here, we have studied the role of the delta pH in vivo by analyzing the translocation of Tat substrates in transfected tobacco protoplasts. We show that the complete maturation of the precursor of the 23-kDa lumenal protein (pre-23K) and of a fusion of the 23K presequence linked to green fluorescent protein (pre-GFP) are unaffected by dissipation of the delta pH. High level expression of Tat substrates in protoplasts has recently been shown to result in "translocation reversal" in that a large proportion of a given substrate is partially translocated across the thylakoid membrane, processed to the mature size, and returned to the stroma. However, the efficiency of translocation of pre-23K is undiminished in the absence of the delta pH and/or delta psi, and the rate and extent of maturation of both pre-23K and pre-GFP by the lumen-facing processing peptidase is similarly unaffected. These data demonstrate that the proton motive force is not required for the functional assembly of the Tat translocon and the initial stages of translocation in higher plant chloroplasts in vivo. We conclude that unknown factors play an influential role in both the mechanism and energetics of this system under in vivo conditions.


Subject(s)
Gene Products, tat/chemistry , Nicotiana/metabolism , Thylakoids/metabolism , Bacteria/metabolism , Biological Transport , Cell Membrane/metabolism , Chloroplasts/metabolism , Genes, Plant , Genes, tat , Green Fluorescent Proteins/metabolism , Hydrogen-Ion Concentration , Membrane Potentials , Peptides/chemistry , Plant Proteins/metabolism , Protein Folding , Protein Transport , Proton-Motive Force , Protoplasts , Recombinant Fusion Proteins/chemistry , Time Factors , Transfection
10.
Plant Physiol ; 138(3): 1577-85, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15908597

ABSTRACT

Nonphotochemical quenching (NPQ) of excitation energy is a well-established phenomenon in green plants, where it serves to protect the photosynthetic apparatus from photodamage under excess illumination. The induction of NPQ involves a change in the function of the light-harvesting apparatus, with the formation of quenching centers that convert excitation energy into heat. Recently, a comparable phenomenon was demonstrated in cyanobacteria grown under iron-starvation. Under these conditions, an additional integral membrane chlorophyll-protein, IsiA, is synthesized, and it is therefore likely that IsiA is required for NPQ in cyanobacteria. We have previously used fluorescence recovery after photobleaching to show that phycobilisomes diffuse rapidly on the membrane surface, but are immobilized when cells are immersed in high-osmotic strength buffers, apparently because the interaction between phycobilisomes and reaction centers is stabilized. Here, we show that when cells of the cyanobacterium Synechocystis sp. PCC 6803 subjected to prolonged iron-deprivation are immersed in 1 m phosphate buffer, NPQ can still be induced as normal by high light. However, the formation of the quenched state is irreversible under these conditions, suggesting that it involves the coupling of free phycobilisomes to an integral-membrane complex, an interaction that is stabilized by 1 m phosphate. Fluorescence spectra are consistent with this idea. Fluorescence recovery after photobleaching measurements confirm that the induction of NPQ in the presence of 1 m phosphate is accompanied by immobilization of the phycobilisomes. We propose as a working hypothesis that a major component of the fluorescence quenching observed in iron-starved cyanobacteria arises from the coupling of free phycobilisomes to IsiA.


Subject(s)
Cyanobacteria/metabolism , Phycobilisomes/metabolism , Energy Metabolism , Iron/pharmacology , Kinetics , Light , Phycobilisomes/ultrastructure , Spectrometry, Fluorescence , Synechocystis/metabolism
11.
FEBS Lett ; 579(1): 275-80, 2005 Jan 03.
Article in English | MEDLINE | ID: mdl-15620726

ABSTRACT

Cyanobacteria have previously been considered to differ fundamentally from plants and algae in their regulation of light harvesting. We show here that in fact the ecologically important marine prochlorophyte, Prochlorococcus, is capable of forming rapidly reversible non-photochemical quenching of chlorophyll a fluorescence (NPQf or qE) as are freshwater cyanobacteria when they employ the iron stress induced chlorophyll-based antenna, IsiA. For Prochlorococcus, the capacity for NPQf is greater in high light-adapted strains, except during iron starvation which allows for increased quenching in low light-adapted strains. NPQf formation in freshwater cyanobacteria is accompanied by deep Fo quenching which increases with prolonged iron starvation.


Subject(s)
Chlorophyll/chemistry , Cyanobacteria/chemistry , Fluorescence , Bacterial Proteins/physiology , Chlorophyll A , Fresh Water/chemistry , Iron/physiology , Light-Harvesting Protein Complexes/physiology , Photochemistry , Prochlorococcus/chemistry , Synechococcus/chemistry
12.
J Biol Chem ; 279(53): 55792-800, 2004 Dec 31.
Article in English | MEDLINE | ID: mdl-15498761

ABSTRACT

YidC/OxaI play essential roles in the insertion of a wide range of membrane proteins in Eschericha coli and mitochondria, respectively. In contrast, the chloroplast thylakoid homolog Albino3 (Alb3) facilitates the insertion of only a specialized subset of proteins, and the vast majority insert into thylakoids by a pathway that is so far unique to chloroplasts. In this study, we have analyzed the role of Alb3 in the cyanobacterium Synechocystis sp. PCC6803, which contains internal thylakoids that are similar in some respects to those of chloroplasts. The single alb3 gene (slr1471) was disrupted by the introduction of an antibiotic cassette, and photoautotrophic growth resulted in the generation of a merodiploid species (but not full segregation), indicating an essential role for Alb3 in maintaining the photosynthetic apparatus. Thylakoid organization is lost under these conditions, and the levels of photosynthetic pigments fall to approximately 40% of wild-type levels. Photosynthetic electron transport and oxygen evolution are reduced by a similar extent. Growth on glucose relieves the selective pressure to maintain photosynthetic competence, and under these conditions, the cells become completely bleached, again indicating that Alb3 is essential for thylakoid biogenesis. Full segregation could not be achieved under any growth regime, strongly suggesting that the slr1471 open reading frame is essential for cell viability.


Subject(s)
Arabidopsis Proteins/physiology , Cyanobacteria/metabolism , Synechocystis/metabolism , Arabidopsis Proteins/metabolism , Blotting, Southern , Cell Membrane/metabolism , Chlorophyll/chemistry , Chloroplasts/metabolism , Electron Transport , Electrophoresis, Polyacrylamide Gel , Glucose/metabolism , Light , Microscopy, Confocal , Microscopy, Electron , Microscopy, Electron, Transmission , Mitochondria/metabolism , Models, Genetic , Mutation , Open Reading Frames , Oxygen/metabolism , Photosynthesis , Plasmids/metabolism , Pressure , Thylakoids/metabolism , Time Factors
13.
Res Microbiol ; 155(9): 720-5, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15501648

ABSTRACT

Members of two cyanobacterial genera, Synechococcus and Prochlorococcus, are dominant within the prokaryotic component of the picophytoplankton and contribute significantly to global photosynthetic productivity. These organisms are known to be susceptible to infection by bacteriophages (viruses that infect bacteria) and it is believed that phage infection in the oceans has exerted selective pressures on the evolution of both phage and host and continues to influence community structure. Understanding of the processes of host-phage interaction within the marine environment is limited; however, new insights have arisen from sequence analysis of the genome of the bacteriophage S-PM2, which infects Synechococcus strains. The phage was found to encode homologs of the key photosystem II reaction center core polypeptides, D1 and D2. These reaction center polypeptides are known to be rapidly turned over in uninfected cells in a repair cycle that helps to protect oxygenic phototrophs against photoinhibition. This finding suggests that bacteriophages infecting marine cyanobacteria may play an active role in protecting their hosts against photoinhibition, thereby ensuring an energy supply for replication by preventing the deleterious effects on host cell integrity seen during acute photoinhibition.


Subject(s)
Bacteriophages/physiology , Photosynthesis , Photosystem II Protein Complex/metabolism , Prochlorococcus/virology , Seawater/microbiology , Synechococcus/virology , Amino Acid Sequence , Molecular Sequence Data , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/genetics
14.
Planta ; 218(5): 793-802, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14648116

ABSTRACT

Plants respond to growth under different environmental conditions by adjusting the composition of the photosynthetic apparatus. To investigate the consequences of the acclimation strategies adopted by Arabidopsis thaliana, we have assessed the functioning of the photosynthetic apparatus in plants with very different chloroplast compositions. Using chlorophyll fluorescence analysis, we have determined the efficiency of, and capacity for, electron transport, assessed the ability to undergo state transitions, and measured non-photochemical quenching over a range of actinic irradiances followed by its resolution into fast- and slow-relaxing components; parallel measurements of leaf carotenoid composition were also carried out. The data clearly show that acclimation serves to maintain the electron transport chain in an oxidised state, ensuring efficient photochemistry. Furthermore, plants grown in high light have a greater capacity for energy-dependent feedback de-excitation, but this is not correlated with xanthophyll cycle pigment levels or de-epoxidation state. Surprisingly, even plants with very low levels of light-harvesting complexes were able to undergo state transitions. We also show that apparent discrepancies between chloroplast composition and photosynthetic function can be attributed to varying degrees of light penetration through the leaf. Thus, leaf chlorophyll content is an important factor influencing acclimation within the leaf.


Subject(s)
Acclimatization/physiology , Arabidopsis/physiology , Chloroplasts/metabolism , Photosynthesis/physiology , Acclimatization/radiation effects , Arabidopsis/radiation effects , Carotenoids/metabolism , Chlorophyll/metabolism , Chloroplasts/radiation effects , Electron Transport/radiation effects , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Time Factors
15.
Plant Cell ; 15(9): 2152-64, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12953117

ABSTRACT

When plants, algae, and cyanobacteria are exposed to excessive light, especially in combination with other environmental stress conditions such as extreme temperatures, their photosynthetic performance declines. A major cause of this photoinhibition is the light-induced irreversible photodamage to the photosystem II (PSII) complex responsible for photosynthetic oxygen evolution. A repair cycle operates to selectively replace a damaged D1 subunit within PSII with a newly synthesized copy followed by the light-driven reactivation of the complex. Net loss of PSII activity occurs (photoinhibition) when the rate of damage exceeds the rate of repair. The identities of the chaperones and proteases involved in the replacement of D1 in vivo remain uncertain. Here, we show that one of the four members of the FtsH family of proteases (cyanobase designation slr0228) found in the cyanobacterium Synechocystis sp PCC 6803 is important for the repair of PSII and is vital for preventing chronic photoinhibition. Therefore, the ftsH gene family is not functionally redundant with respect to the repair of PSII in this organism. Our data also indicate that FtsH binds directly to PSII, is involved in the early steps of D1 degradation, and is not restricted to the removal of D1 fragments. These results, together with the recent analysis of ftsH mutants of Arabidopsis, highlight the critical role played by FtsH proteases in the removal of damaged D1 from the membrane and the maintenance of PSII activity in vivo.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/genetics , Photosystem II Protein Complex/genetics , Bacterial Proteins/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Cyanobacteria/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Light , Mutagenesis, Insertional , Mutation , Oxygen/metabolism , Photosynthesis/genetics , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects
17.
J Biol Chem ; 277(3): 2006-11, 2002 Jan 18.
Article in English | MEDLINE | ID: mdl-11717304

ABSTRACT

Using a var2-2 mutant of Arabidopsis thaliana, which lacks a homologue of the zinc-metalloprotease, FtsH, we demonstrate that this protease is required for the efficient turnover of the D1 polypeptide of photosystem II and protection against photoinhibition in vivo. We show that var2-2 leaves are much more susceptible to light-induced photosystem II photoinhibition than wild-type leaves. Furthermore, the rate of photosystem II photoinhibition in untreated var2-2 leaves is equivalent to that of var2-2 and wild-type leaves, which have been treated with lincomycin, an inhibitor of the photosystem II repair cycle at the level of D1 synthesis. This is in contrast to untreated wild-type leaves, which show a much slower rate of photosystem II photoinhibition due to an efficient photosystem II repair cycle. The recovery of var2-2 leaves from photosystem II photoinhibition is also impaired relative to wild-type. Using Western blot analysis in the presence of lincomycin we show that the D1 polypeptide remains stable in leaves of the var2-2 mutant under photoinhibitory conditions that lead to D1 degradation in wild-type leaves and that the abundance of DegP2 is not affected by the var2-2 mutation. We conclude, therefore, that the Var2 FtsH homologue is required for the cleavage of the D1 polypeptide in vivo. In addition, we identify a conserved lumenal domain in Var2 that is unique to FtsH homologues from oxygenic phototrophs.


Subject(s)
Arabidopsis/physiology , Bacterial Proteins/physiology , Membrane Proteins/physiology , Photosynthetic Reaction Center Complex Proteins , ATP-Dependent Proteases , Amino Acid Sequence , Arabidopsis Proteins , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Hydrolysis , Light , Lincomycin/pharmacology , Membrane Proteins/chemistry , Molecular Sequence Data , Photosynthetic Reaction Center Complex Proteins/antagonists & inhibitors , Photosynthetic Reaction Center Complex Proteins/radiation effects , Photosystem II Protein Complex , Sequence Homology, Amino Acid , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...