Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(26): 17356-17359, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28650012

ABSTRACT

We investigated the thermoelectric properties of flat-stacked 5,15-diphenylporphyrins containing divalent metal ions Ni, Co, Cu or Zn, which are strongly coordinated with the nitrogens of pyridyl coated gold electrodes. Changing metal atom has little effect on the thermal conductance due to the phonons. The room-temperature Seebeck coefficients of these junctions are rather high, ranging from 90 µV K-1 for Cu, Ni and Zn-porphyrins to -16 µV K-1 for Co-porphyrin. These values could be further increased by lowering molecular energy levels relative to the DFT-predicted Fermi energy. In contrast, the phonon contribution to the thermal conductance of these junctions is rather insensitive to the choice of metal atom. The thermopower, thermal conductance and electrical conductance combined to yield the room-temperature values for the thermoelectric figure of merit ZT ranging from 1.6 for Cu porphyrin to ∼0.02 for Ni-porphyrin.

2.
ACS Nano ; 11(3): 3404-3412, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28282115

ABSTRACT

Graphene and related two-dimensional (2D) materials possess outstanding electronic and mechanical properties, chemical stability, and high surface area. However, to realize graphene's potential for a range of applications in materials science and nanotechnology there is a need to understand and control the interaction of graphene with tailored high-performance surfactants designed to facilitate the preparation, manipulation, and functionalization of new graphene systems. Here we report a combined experimental and theoretical study of the surface structure and dynamics on graphene of pyrene-oligoethylene glycol (OEG) -based surfactants, which have previously been shown to disperse carbon nanotubes in water. Molecular self-assembly of the surfactants on graphitic surfaces is experimentally monitored and optimized using a graphene coated quartz crystal microbalance in ambient and vacuum environments. Real-space nanoscale resolution nanomechanical and topographical mapping of submonolayer surfactant coverage, using ultrasonic and atomic force microscopies both in ambient and ultrahigh vacuum, reveals complex, multilength-scale self-assembled structures. Molecular dynamics simulations show that at the nanoscale these structures, on atomically flat graphitic surfaces, are dependent upon the surfactant OEG chain length and are predicted to display a previously unseen class of 2D self-arranged "starfish" micelles (2DSMs). While three-dimensional micelles are well-known for their widespread uses ranging from microreactors to drug-delivery vehicles, these 2DSMs possess the highly desirable and tunable characteristics of high surface affinity coupled with unimpeded mobility, opening up strategies for processing and functionalizing 2D materials.

3.
Sci Rep ; 6: 37352, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27869128

ABSTRACT

In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10-2 G0 for Ni-DPP up to 8.10-2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-conductance CPP single-molecule devices.


Subject(s)
Coordination Complexes/chemistry , Electric Conductivity , Metalloporphyrins/chemistry , Cobalt/chemistry , Copper/chemistry , Electrochemistry , Nickel/chemistry , Zinc/chemistry
4.
Nanoscale ; 8(30): 14507-13, 2016 Aug 14.
Article in English | MEDLINE | ID: mdl-27412865

ABSTRACT

Graphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that the transport is consistent with phase-coherent tunneling, but with an attenuation factor of ßN = 0.69 per methyl unit, which is lower than the value measured for Au-molecule-Au junctions. Comparison with density-functional-theory calculations of electron transport through graphene-molecule-Au junctions and Au-molecule-Au junctions reveals that this difference is due to the difference in Fermi energies of the two types of junction, relative to the frontier orbitals of the molecules. For most molecules, their electrical conductance in graphene-molecule-Au junctions is higher than that in Au-molecule-Au junctions, which suggests that graphene offers superior electrode performance, when utilizing carboxylic acid anchor groups.

5.
Chemistry ; 21(10): 3891-4, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25639258

ABSTRACT

Easily reversible aqueous dispersion/precipitation of multiwalled carbon nanotubes (MWNTs) has been demonstrated using small-molecule non-ionic pyrene-based surfactants, which exhibit lower critical solution temperature (LCST) phase behaviour. The MWNTs are dispersed by means of non-covalent interactions. The dispersibility can be switched "off" (i.e., MWNTs precipitated) upon heating and switched "on" (i.e., MWNTs re-dispersed) upon cooling and merely swirling the sample at room temperature, that is, under very mild conditions. This effect is also observed under high ionic strength conditions with NaCl in the aqueous phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...