Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 38(28): 9105-14, 1999 Jul 13.
Article in English | MEDLINE | ID: mdl-10413485

ABSTRACT

Readily synthesized nicotinamide adenine dinucleotide (NAD(+)) analogues have been used to investigate aspects of the cyclization of NAD(+) to cyclic adenosine 5'-O-diphosphate ribose (cADPR) catalyzed by the enzyme adenosine 5'-O-diphosphate (ADP) ribosyl cyclase and to produce the first potent inhibitors of this enzyme. In all cases, inhibition of Aplysia californica cyclase by various substrate analogues was found to be competitive while inhibition by nicotinamide exhibited mixed-behavior characteristics. Nicotinamide hypoxanthine dinucleotide (NHD(+)), nicotinamide guanine dinucleotide (NGD(+)), C1'-m-benzamide adenine dinucleotide (Bp(2)A), and C1'-m-benzamide nicotinamide dinucleotide (Bp(2)N) were found to be nanomolar potency inhibitors with inhibition constants of 70, 143, 189, and 201 nM, respectively. However, NHD(+) and NGD(+) are also known substrates and are slowly converted to cyclic products, thus preventing their further use as inhibitors. The symmetrical bis-nucleotides, bis-adenine dinucleotide (Ap(2)A), bis-hypoxanthine dinucleotide (Hp(2)H), and bis-nicotinamide dinucleotide (Np(2)N), exhibited micromolar competitive inhibition, with Ap(2)A displaying the greatest affinity for the enzyme. 2',3'-Di-O-acetyl nicotinamide adenine dinucleotide (AcONAD(+)) was not a substrate for the A. californica cyclase but also displayed some inhibition at a micromolar level. Finally, inhibition of the cyclase by adenosine 5'-O-diphosphate ribose (ADPR) and inosine 5'-O-diphosphate ribose (IDPR) was observed at millimolar concentration. The nicotinamide aromatic ring appears to be the optimal motif required for enzymatic recognition, while modifications of the 2'- and 3'-hydroxyls of the nicotinamide ribose seem to hamper binding to the enzyme. Stabilizing enzyme/inhibitor interactions and the inability of the enzyme to release unprocessed material are both considered to explain nanomolar inhibition. Recognition of inhibitors by other ADP ribosyl cyclases has also been investigated, and this study now provides the first potent nonhydrolyzable sea urchin ADP ribosyl cyclase and cADPR hydrolase inhibitor Bp(2)A, with inhibition observed at the micromolar and nanomolar level, respectively. The benzamide derivatives did not inhibit CD38 cyclase or hydrolase activity when NGD(+) was used as substrate. These results emphasize the difference between CD38 and other enzymes in which the cADPR cyclase activity predominates.


Subject(s)
Antigens, CD , Antigens, Differentiation/chemistry , Antigens, Differentiation/metabolism , Aplysia/enzymology , Enzyme Inhibitors/chemical synthesis , NAD+ Nucleosidase/chemistry , NAD+ Nucleosidase/metabolism , ADP-ribosyl Cyclase , ADP-ribosyl Cyclase 1 , Animals , Binding Sites , Enzyme Inhibitors/metabolism , Guanine Nucleotides/chemistry , Guanine Nucleotides/metabolism , Kinetics , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , NAD/analogs & derivatives , NAD/chemical synthesis , NAD/chemistry , NAD/metabolism , Ovum/enzymology , Sea Urchins/enzymology , Substrate Specificity
2.
J Biol Chem ; 272(26): 16358-63, 1997 Jun 27.
Article in English | MEDLINE | ID: mdl-9195942

ABSTRACT

Cyclic ADP-ribose (cADPR) is a putative second messenger that has been demonstrated to mobilize Ca2+ in many cell types. Its postulated role as the endogenous regulator of ryanodine-sensitive Ca2+ release channels has been greatly supported by the advent and use of specific cADPR receptor antagonists such as 8-NH2-cADPR (Walseth, T. F., and Lee, H. C. (1993) Biochim. Biophys. Acta 1178, 235-242). However, investigations of the role of cADPR in physiological responses, such as fertilization, stimulus-secretion coupling, and excitation-contraction coupling, have been hindered by the susceptibility of cADPR receptor antagonists to hydrolysis and the need to introduce these molecules into cells by microinjection or patch clamp techniques. We have recently reported on the discovery of a poorly hydrolyzable analogue of cADPR, 7-deaza-cADPR (Bailey, V. C., Sethi, J. K., Fortt, S. M., Galione, A., and Potter, B. V. L. (1997) Chem. Biol. 4, 41-51) but this, like cADPR, is an agonist of ryanodine-sensitive Ca2+ release channels. We therefore explored the possibility of combining antagonistic activity with that of hydrolytic resistance and now report on the biological properties of the first hydrolysis-resistant cADPR receptor antagonist, 7-deaza-8-bromo-cADPR. In addition this compound has the advantage of being membrane-permeable. Together these properties make this hybrid molecule the most powerful tool to date for studying cADPR-mediated Ca2+ signaling in intact cells.


Subject(s)
Adenosine Diphosphate Ribose/analogs & derivatives , Adenosine Diphosphate Ribose/antagonists & inhibitors , Adenosine Diphosphate Ribose/pharmacology , Animals , Calcium/metabolism , Cyclic ADP-Ribose , Hydrolysis , Sea Urchins , Structure-Activity Relationship
3.
Chem Biol ; 4(1): 51-61, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9070427

ABSTRACT

BACKGROUND: Cyclic adenosine 5'-diphosphate ribose (cADPR), a naturally occurring metabolite of nicotinamide adenine dinucleotide (NAD+), mobilizes Ca2+ from non-mitochondrial stores in a variety of mammalian and invertebrate tissues. It has been shown that cADPR activates ryanodine-sensitive Ca(2+)-release channels, working independently of inositol 1,4,5-trisphosphate (IP3) to mobilize intracellular Ca2+ stores. In some systems, cADPR has been shown to be more potent than IP3. The chemo-enzymatic synthesis of structurally modified analogues of cADPR can provide pharmacological tools for probing this new Ca(2+)-signaling pathway. In this work, we describe the synthesis and evaluation of a structural mimic of cADPR with different Ca(2+)-releasing properties. RESULTS: 7-Deaza cyclic adenosine 5'-diphosphate ribose (7-deaza cADPR), a novel cADPR analogue modified in the purine ring, was synthesized and its ability to release Ca2+ from non-mitochondrial pools in homogenates made from sea urchin eggs was investigated. 7-Deaza cADPR was more effective in releasing Ca2+ than cADPR, but it only released approximately 66% of the Ca2+ released by a maximal concentration of cADPR. It was also more resistant to hydrolysis than cADPR. If we administered increasing concentrations of 7-deaza cADPR at the same time as a maximal concentration of cADPR, the induction of Ca2+ release by cADPR was antagonized. CONCLUSIONS: 7-Deaza cADPR has a Ca(2+)-release profile consistent with that of a partial agonist, and it is the first reported example of such a compound to act at the cADPR receptor. The imidazole ring of cADPR is clearly important in stimulating the Ca(2+)-release machinery, and the present results demonstrate that structural modification of a site other than position 8 of the purine ring can affect the efficacy of Ca2+ release. 7-Deaza cADPR represents a significant step forwards in designing modulators of the cADPR signaling pathway.


Subject(s)
Adenosine Diphosphate Ribose/analogs & derivatives , Calcium/metabolism , Oocytes/metabolism , Adenosine Diphosphate Ribose/chemical synthesis , Adenosine Diphosphate Ribose/metabolism , Adenosine Diphosphate Ribose/pharmacology , Animals , Cyclic ADP-Ribose , GTP-Binding Proteins/metabolism , Indicators and Reagents , Inositol 1,4,5-Trisphosphate/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Models, Biological , Molecular Structure , Oocytes/drug effects , Phosphatidylinositol 4,5-Diphosphate/metabolism , Sea Urchins , Second Messenger Systems , Structure-Activity Relationship , Tritium
4.
FEBS Lett ; 379(3): 227-30, 1996 Feb 05.
Article in English | MEDLINE | ID: mdl-8603694

ABSTRACT

Cyclic aristeromycin diphosphate ribose, a carbocyclic analogue of cyclic adenosine diphosphate ribose, was synthesised using a chemo-enzymatic route involving activation of aristeromycin 5'-phosphate by diphenyl phosphochloridate. The calcium-releasing properties of this novel analogue were investigated in sea urchin egg homogenates. While cyclic aristeromycin diphosphate ribose has a calcium release profile similar to that of cyclic adenosine diphosphate ribose (EC50 values are 80 nM and 30 nM, respectively), it is degraded significantly more slowly (t1/2 values are 170 min and 15 min, respectively) and may, therefore, be a useful tool to investigate the activities of cyclic adenosine diphosphate ribose.


Subject(s)
Adenosine Diphosphate Ribose/analogs & derivatives , Calcium/metabolism , Ovum/metabolism , Adenosine/analogs & derivatives , Adenosine/chemistry , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Animals , Cyclic ADP-Ribose , Hydrolysis , Phosphorylation , Sea Urchins
SELECTION OF CITATIONS
SEARCH DETAIL
...