Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1151257, 2023.
Article in English | MEDLINE | ID: mdl-37346069

ABSTRACT

Skin cancer is a serious disease that affects people all over the world. Melanoma is an aggressive form of skin cancer, and early detection can significantly reduce human mortality. In the United States, approximately 97,610 new cases of melanoma will be diagnosed in 2023. However, challenges such as lesion irregularities, low-contrast lesions, intraclass color similarity, redundant features, and imbalanced datasets make improved recognition accuracy using computerized techniques extremely difficult. This work presented a new framework for skin lesion recognition using data augmentation, deep learning, and explainable artificial intelligence. In the proposed framework, data augmentation is performed at the initial step to increase the dataset size, and then two pretrained deep learning models are employed. Both models have been fine-tuned and trained using deep transfer learning. Both models (Xception and ShuffleNet) utilize the global average pooling layer for deep feature extraction. The analysis of this step shows that some important information is missing; therefore, we performed the fusion. After the fusion process, the computational time was increased; therefore, we developed an improved Butterfly Optimization Algorithm. Using this algorithm, only the best features are selected and classified using machine learning classifiers. In addition, a GradCAM-based visualization is performed to analyze the important region in the image. Two publicly available datasets-ISIC2018 and HAM10000-have been utilized and obtained improved accuracy of 99.3% and 91.5%, respectively. Comparing the proposed framework accuracy with state-of-the-art methods reveals improved and less computational time.

2.
Diagnostics (Basel) ; 13(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175009

ABSTRACT

The early detection of breast cancer using mammogram images is critical for lowering women's mortality rates and allowing for proper treatment. Deep learning techniques are commonly used for feature extraction and have demonstrated significant performance in the literature. However, these features do not perform well in several cases due to redundant and irrelevant information. We created a new framework for diagnosing breast cancer using entropy-controlled deep learning and flower pollination optimization from the mammogram images. In the proposed framework, a filter fusion-based method for contrast enhancement is developed. The pre-trained ResNet-50 model is then improved and trained using transfer learning on both the original and enhanced datasets. Deep features are extracted and combined into a single vector in the following phase using a serial technique known as serial mid-value features. The top features are then classified using neural networks and machine learning classifiers in the following stage. To accomplish this, a technique for flower pollination optimization with entropy control has been developed. The exercise used three publicly available datasets: CBIS-DDSM, INbreast, and MIAS. On these selected datasets, the proposed framework achieved 93.8, 99.5, and 99.8% accuracy, respectively. Compared to the current methods, the increase in accuracy and decrease in computational time are explained.

3.
Sensors (Basel) ; 23(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37112323

ABSTRACT

With the most recent developments in wearable technology, the possibility of continually monitoring stress using various physiological factors has attracted much attention. By reducing the detrimental effects of chronic stress, early diagnosis of stress can enhance healthcare. Machine Learning (ML) models are trained for healthcare systems to track health status using adequate user data. Insufficient data is accessible, however, due to privacy concerns, making it challenging to use Artificial Intelligence (AI) models in the medical industry. This research aims to preserve the privacy of patient data while classifying wearable-based electrodermal activities. We propose a Federated Learning (FL) based approach using a Deep Neural Network (DNN) model. For experimentation, we use the Wearable Stress and Affect Detection (WESAD) dataset, which includes five data states: transient, baseline, stress, amusement, and meditation. We transform this raw dataset into a suitable form for the proposed methodology using the Synthetic Minority Oversampling Technique (SMOTE) and min-max normalization pre-processing methods. In the FL-based technique, the DNN algorithm is trained on the dataset individually after receiving model updates from two clients. To decrease the over-fitting effect, every client analyses the results three times. Accuracies, Precision, Recall, F1-scores, and Area Under the Receiver Operating Curve (AUROC) values are evaluated for each client. The experimental result shows the effectiveness of the federated learning-based technique on a DNN, reaching 86.82% accuracy while also providing privacy to the patient's data. Using the FL-based DNN model over a WESAD dataset improves the detection accuracy compared to the previous studies while also providing the privacy of patient data.


Subject(s)
Artificial Intelligence , Wrist , Humans , Galvanic Skin Response , Wrist Joint , Fitness Trackers
4.
Sci Rep ; 13(1): 5043, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36977727

ABSTRACT

In this paper, the newly developed Fractal-Fractional derivative with power law kernel is used to analyse the dynamics of chaotic system based on a circuit design. The problem is modelled in terms of classical order nonlinear, coupled ordinary differential equations which is then generalized through Fractal-Fractional derivative with power law kernel. Furthermore, several theoretical analyses such as model equilibria, existence, uniqueness, and Ulam stability of the system have been calculated. The highly non-linear fractal-fractional order system is then analyzed through a numerical technique using the MATLAB software. The graphical solutions are portrayed in two dimensional graphs and three dimensional phase portraits and explained in detail in the discussion section while some concluding remarks have been drawn from the current study. It is worth noting that fractal-fractional differential operators can fastly converge the dynamics of chaotic system to its static equilibrium by adjusting the fractal and fractional parameters.

5.
Diagnostics (Basel) ; 13(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36673057

ABSTRACT

The competence of machine learning approaches to carry out clinical expertise tasks has recently gained a lot of attention, particularly in the field of medical-imaging examination. Among the most frequently used clinical-imaging modalities in the healthcare profession is chest radiography, which calls for prompt reporting of the existence of potential anomalies and illness diagnostics in images. Automated frameworks for the recognition of chest abnormalities employing X-rays are being introduced in health departments. However, the reliable detection and classification of particular illnesses in chest X-ray samples is still a complicated issue because of the complex structure of radiographs, e.g., the large exposure dynamic range. Moreover, the incidence of various image artifacts and extensive inter- and intra-category resemblances further increases the difficulty of chest disease recognition procedures. The aim of this study was to resolve these existing problems. We propose a deep learning (DL) approach to the detection of chest abnormalities with the X-ray modality using the EfficientDet (CXray-EffDet) model. More clearly, we employed the EfficientNet-B0-based EfficientDet-D0 model to compute a reliable set of sample features and accomplish the detection and classification task by categorizing eight categories of chest abnormalities using X-ray images. The effective feature computation power of the CXray-EffDet model enhances the power of chest abnormality recognition due to its high recall rate, and it presents a lightweight and computationally robust approach. A large test of the model employing a standard database from the National Institutes of Health (NIH) was conducted to demonstrate the chest disease localization and categorization performance of the CXray-EffDet model. We attained an AUC score of 0.9080, along with an IOU of 0.834, which clearly determines the competency of the introduced model.

SELECTION OF CITATIONS
SEARCH DETAIL
...