Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 119(1-4): 413-20, 2006.
Article in English | MEDLINE | ID: mdl-16829510

ABSTRACT

There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed.


Subject(s)
Construction Materials/analysis , Radiation Protection/instrumentation , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Dose-Response Relationship, Radiation , Equipment Design , Equipment Failure Analysis , Materials Testing , Radiation Dosage , Radiation Protection/methods
2.
Health Phys ; 89(3): 233-46, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16096499

ABSTRACT

The cumulative absorbed dose in fired-clay bricks collected from ten buildings in the populated contaminated settlement (137Cs, 1,470 kBq m(-2)) of Stary Vishkov, located 175 km downwind of the Chernobyl Nuclear Power Plant (NPP) in the Bryansk administrative region of Russia, was determined using luminescence techniques by five laboratories. At each location, the cumulative dose, after subtraction of the natural background dose, was translated to absorbed dose in air using conversion factors derived from Monte Carlo simulations. The simulations employed source distributions inferred from contemporary soil contamination data and also took into account heterogeneity of fallout deposition. At four locations the cumulative dose at a reference location was calculated, enabling the luminescence determinations to be compared directly with values of cumulative absorbed dose in air obtained using deterministic models. A "local" conversion factor was also derived from the Monte Carlo simulations for locations where the disturbance of soil was significant. Values of the "local" cumulative dose in air calculated using this factor were compared with those predicted using the deterministic models at each sampled location, allowing location factors to be calculated. The methodology developed is generally applicable to populated areas contaminated by radioactive fallout in which brick buildings are found. The sensitivity of the luminescence techniques for bricks from this region of Russia was sufficient to evaluate cumulative absorbed dose in brick due to fallout of less than 20 mGy.


Subject(s)
Air Pollutants, Radioactive/adverse effects , Chernobyl Nuclear Accident , Construction Materials , Radioactive Fallout , Cesium Radioisotopes/analysis , Environmental Monitoring , Power Plants , Radiation Dosage , Retrospective Studies , Thermoluminescent Dosimetry/methods
3.
Health Phys ; 87(6): 625-41, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15545769

ABSTRACT

Luminescence retrospective dosimetry techniques have been applied with ceramic bricks to determine the cumulative external gamma dose due to fallout, primarily from the 1949 test, in populated regions lying NE of the Semipalatinsk Nuclear Test Site in Altai, Russia, and the Semipalatinsk region, Kazakhstan. As part of a pilot study, nine settlements were examined, three within the regions of highest predicted dose (Dolon in Kazakshstan; Laptev Log and Leshoz Topolinskiy in Russia) and the remainder of lower predicted dose (Akkol, Bolshaya Vladimrovka, Kanonerka, and Izvestka in Kazakshstan; Rubtsovsk and Kuria in Russia) within the lateral regions of the fallout trace due to the 1949 test. The settlement of Kainar, mainly affected by the 24 September 1951 nuclear test, was also examined. The bricks from this region were found to be generally suitable for use with the luminescence method. Estimates of cumulative absorbed dose in air due to fallout for Dolon and Kanonerka in Kazakshstan and Leshoz Topolinskiy were 475 +/- 110 mGy, 240 +/- 60 mGy, and 230 +/- 70 mGy, respectively. The result obtained in Dolon village is in agreement with published calculated estimates of dose normalized to Cs concentration in soil. At all the other locations (except Kainar) the experimental values of cumulative absorbed dose obtained indicated no significant dose due to fallout that could be detected within a margin of about 25 mGy. The results demonstrate the potential suitability of the luminescence method to map variations in cumulative dose within the relatively narrow corridor of fallout distribution from the 1949 test. Such work is needed to provide the basis for accurate dose reconstruction in settlements since the predominance of short-lived radionuclides in the fallout and a high degree of heterogeneity in the distribution of fallout are problematic for the application of conventional dosimetry techniques.


Subject(s)
Luminescent Measurements , Radioactive Fallout , Radiometry
4.
Health Phys ; 86(1): 25-41, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14695006

ABSTRACT

The cumulative absorbed dose in bricks collected from six buildings in two heavily contaminated settlements (137Cs > 2,000 kBq m(-2)) located downwind of the Chernobyl Nuclear Power Plant was determined using luminescence techniques by six laboratories. The settlements, Vesnianoje in Ukraine and Zaborie in Russia, are located in, respectively, proximal and distal locations relative to the Chernobyl Nuclear Power Plant. The luminescence determinations of cumulative dose in brick, after subtraction of the natural background dose, were translated to absorbed dose in air at a Reference Location using conversion factors derived from Monte Carlo simulations of photon transport. The simulations employed source distributions inferred from contemporary soil contamination data and also took into account heterogeneity of fallout deposition. This translation enables the luminescence determinations to be compared directly with values of cumulative absorbed dose obtained by computational modeling and also other dose reconstruction methods. For each sampled location the cumulative dose was calculated using three deterministic models, two of which are based on the attenuation of dose-rate with migration of radionuclides in soil and the third on historic instrumental gamma dose-rate data. The results of the comparison of the two methods indicate overall agreement within margins of +/-25%. The methodology developed is generally applicable and adaptable to areas contaminated by much lower levels of radioactive fallout in which brick buildings are found.


Subject(s)
Construction Materials/analysis , Models, Theoretical , Power Plants , Radioactive Fallout/analysis , Radioactive Hazard Release , Radioisotopes/analysis , Radiometry/instrumentation , Radiometry/methods , Computer Simulation , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Humans , Radiation Dosage , Retrospective Studies , Rural Population , Thermoluminescent Dosimetry/methods , Ukraine , Wind
5.
Radiat Prot Dosimetry ; 101(1-4): 519-24, 2002.
Article in English | MEDLINE | ID: mdl-12382804

ABSTRACT

Ceramic materials that are widely employed in dental prosthetics and repairs exhibit luminescent properties. Because of their use in the body, these materials are potentially of interest in situations where retrospective dosimetry for individuals is required but where monitoring was not planned. The luminescent properties of dental ceramics obtained from Germany, Spain and the UK were examined. Linear dose-response characteristics were obtained in the range < 100 mGy to 10 Gy using thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared-stimulated luminescence (IRSL) measurement techniques. Measurements of time-resolved luminescence were also performed to examine the nature of the luminescence recombination under visible (470 nm) and IR (855 nm) stimulation. The results obtained by TL and optically stimulated techniques suggest that there may be deeper traps than previously observed in certain types of dental ceramic. Such traps may be less susceptible to optical and athermal fading than was reported in earlier studies.


Subject(s)
Ceramics/chemistry , Dental Materials/chemistry , Dental Prosthesis , Thermoluminescent Dosimetry/methods , Germany , Infrared Rays , Spain , Thermodynamics , Time Factors
6.
Health Phys ; 82(1): 94-101, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11768803

ABSTRACT

Bricks collected from a contaminated village (Muslyumovo) of the lower Techa river valley, Southern Urals, Russia, were measured using thermoluminescence and optically stimulated luminescence by four European laboratories and a U.S. laboratory to establish and compare the applied dose reconstruction methodologies. The bricks, collected from 60-100-year-old buildings, had accumulated a relatively high dose due to natural sources of radiation in the brick and from the surrounding environment. This work represents the results of a first international intercomparison of luminescence measurements for bricks from the Southern Urals. The luminescence measurements of absorbed dose in bricks collected from the most shielded locations of the same buildings were used to determine the background dose due to natural sources of radiation and to validate the age of the bricks. The absorbed dose in different bricks measured by four laboratories using thermoluminescence and optically stimulated luminescence at a depth of 10 +/- 2.5 mm from the exposed brick surface agreed within +/-21%. After subtraction of the natural background dose, the absorbed dose in brick due to contaminated river sediments and banks was calculated and found to range between 150 and 200 mGy. The cumulative doses in brick due to man-made sources of radiation at 100 and 130 mm depths in the bricks were also measured and found to be consistent with depth dose profiles calculated by Monte Carlo simulations of photon transport for possible source distributions.


Subject(s)
Luminescent Measurements , Radioactive Pollutants/analysis , Radiometry , Background Radiation , Radiation Protection , Russia
7.
Appl Radiat Isot ; 47(11-12): 1281-6, 1996.
Article in English | MEDLINE | ID: mdl-9022185

ABSTRACT

Intercomparison of EPR-dosimetric techniques using tooth enamel had been performed in order to check whether the results produced by different laboratories are consistent and accurate. Participants were supposed to evaluate doses applied to pulverized enamel samples, using routine techniques from their laboratories. The intercomparison has demonstrated a great variety of methods used for dose reconstruction. Peculiarities of experimental approaches are discussed systematically in terms of procedure for recording the EPR-spectra, determination of the amplitude of the radiation induced signal, determination of the dose, and error propagation.


Subject(s)
Dental Enamel/radiation effects , Electron Spin Resonance Spectroscopy/methods , Radiometry/methods , Dental Enamel/chemistry , Electron Spin Resonance Spectroscopy/statistics & numerical data , Evaluation Studies as Topic , Free Radicals/analysis , Free Radicals/radiation effects , Humans , Laboratories , Radiation Tolerance , Radiometry/statistics & numerical data
8.
Health Phys ; 66(4): 380-91, 1994 Apr.
Article in English | MEDLINE | ID: mdl-8138403

ABSTRACT

During the 1950's, the U.S. Government conducted an intensive atmospheric nuclear testing program in Nevada. Fallout from these atmospheric tests was measured throughout the U.S. with some of the heaviest concentrations to populated areas falling east of the test site in Washington County, UT. External exposures from 6.5 x 10(-4) C kg-1 to 26 x 10(-4) C kg-1 (2.5-5.0 R) were reported for this region. This study provides an independent measurement of fallout radiation doses to selected communities in Utah using a thermoluminescence technique originally developed for the dating of ancient pottery. The application of the predose thermoluminescence technique to fallout dosimetry is described. A mean dose of 38 +/- 15 mGy (4.4 +/- 1.7 R), attributed to fallout radiation, was measured in quartz grains extracted from the outer centimeter of bricks removed from six communities in Washington and Kane Counties in Utah.


Subject(s)
Construction Materials , Radioactive Fallout , Radiometry/methods , Gamma Rays , Nevada , Radiometry/instrumentation , Thermoluminescent Dosimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...