Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38204104

ABSTRACT

Modelling effective thermal properties is crucial for optimizing the thermal performance of materials such as new green insulating fibrous media. In this study, a numerical model is proposed to calculate the effective thermal conductivity of these materials. The fibers are considered to be non-overlapping and randomly oriented in space. The numerical model is based on the finite element method. Particular attention is paid to the accuracy of the results and the influence of the choice of the representative elementary volume (REV) for calculation (cubic or rectangular parallelepiped slice). The calculated effective thermal conductivity of fibrous media under different boundary conditions is also investigated. A set of usual mixed boundary conditions is considered, alongside the uniform temperature gradient conditions. The REV rectangular slice and uniform temperature gradient boundary conditions provide a more accurate estimate of the effective thermal conductivity and are therefore recommended for use in place of the usual cubic representative elementary volume and the usual mixed boundary conditions. This robust model represents a principal novelty of the work. The results are compared with experimental and analytical data previously obtained in the literature for juncus maritimus fibrous media, for different fiber volume fractions, with small relative deviations of 7%. Analytical laws are generally based on simplified assumptions such as infinitely long fibers, and may neglect heat transfer between different phases. Both short and long fiber cases are considered in numerical calculations.

2.
Materials (Basel) ; 16(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37763595

ABSTRACT

The growing awareness of the environment and sustainable development has prompted the search for solutions involving the development of bio-based composite materials for insulating applications, offering an alternative to traditional synthetic materials such as glass- and carbon-reinforced composites. In this study, we investigate the thermal and microstructural properties of new biocomposite insulating materials derived from flaxseed-gum-filled epoxy, with and without the inclusion of reinforced flax fibers. A theoretical approach is proposed to estimate the thermal conductivity, while the composite's microstructure is characterized using X-ray Computed Tomography and image analysis. The local thermal conductivity of the flax fibers and the flaxseed gum matrix is identified by using effective thermal conductivity measurements and analytical models. This study provides valuable insight into the thermal behavior of these biocomposites with varying compositions of flaxseed gum and epoxy resin. The results obtained could not only contribute to a better understanding the thermal properties of these materials but are also of significant interest for advanced numerical modeling applications.

3.
Materials (Basel) ; 16(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903013

ABSTRACT

The present work aims to characterize the radiative thermal properties albedo and optical thickness of Juncus maritimus fibers using a FTIR spectrometer. Measurements of normal/directional transmittance and normal and hemispherical reflectance are performed. The numerical determination of the radiative properties is conducted through the computational treatment of the Radiative Transfer Equation (RTE) using the Discrete Ordinate Method (DOM), together with the inverse method, which is done through Gauss linearization. As it is a non-linear system, iterative calculations are necessary, which demand a significant computational cost, and, to optimize this problem, the Neumann method is used for the numerical determination of the parameters. These radiative properties are useful to quantify the radiative effective conductivity.

4.
Materials (Basel) ; 15(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499888

ABSTRACT

Oil leaks (or spills) into the aquatic environment are considered a natural disaster and a severe environmental problem for the entire planet. Samples of polyurethane (PU) composites were prepared with high specific surface area carbon nanotubes (CNT) to investigate crude oil sorption. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), density measurements, and mechanical compression tests were used to characterize the polyurethane-carbon PU-CNT prepared samples. The spongy composites exhibited good mechanical behavior and a contact angle of up to 119°. The oleophilic character resulted in increased hydrophobicity, a homogeneous oil distribution inside the sponge, and a sorption capacity in a water/oil mixture of 41.82 g/g. Stress-strain curves of the prepared samples showed the good mechanical properties of the sponge, which maintained its stability after more than six sorption desorption cycles. The CNT-PU composites may prove very effective in solving oil pollution problems.

5.
Materials (Basel) ; 11(11)2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30366470

ABSTRACT

This paper focuses on the computational modeling of the effective elastic properties of irregular closed-cell foams. The recent Hill's lemma periodic computational homogenization approach is used to predict the effective elastic properties. Three-dimensional (3D) rendering is reconstructed with the tomography slices of the real irregular closed-cell foam. Its morphological description is analysed to generate realistic numerical closed-cell structures by the Voronoi-based approach. The influences of the Representative Volume Element (RVE) parameters (i.e., the number of realizations and the volume of RVE) and the relative density on the effective elastic properties are studied. Special emphasis is placed on the appropriate choice of boundary conditions. Satisfying agreements between the homogenized results and the experimental results are observed.

6.
J Opt Soc Am A Opt Image Sci Vis ; 23(7): 1645-56, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16783428

ABSTRACT

Modeling of radiation characteristics of semitransparent media containing particles or bubbles in the independent scattering limit is examined. The existing radiative properties models of a single particle in an absorbing medium using the approaches based on (1) the classical Mie theory neglecting absorption by the matrix, (2) the far field approximation, and (3) the near field approximation are reviewed. Comparison between models and experimental measurements are carried out not only for the radiation characteristics but also for hemispherical transmittance and reflectance of porous fused quartz. Large differences are found among the three models predicting the bubble radiative properties when the matrix is strongly absorbing and/or the bubbles are optically large. However, these disagreements are masked by the matrix absorption during calculation of radiation characteristics of the participating medium. It is shown that all three approaches can be used for radiative transfer calculations in an absorbing matrix containing bubbles.

7.
J Opt Soc Am A Opt Image Sci Vis ; 23(1): 91-8, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16478064

ABSTRACT

A modified two-flux approximation is suggested for calculating the hemispherical transmittance and reflectance of a refracting, absorbing, and scattering medium in the case of collimated irradiation of the sample along the normal to the interface. The Fresnel reflection is taken into account in this approach. It is shown that the new approximation is rather accurate for the model transport scattering function. For an arbitrary scattering medium, the error of the modified two-flux approximation is estimated by comparison with the exact numerical calculations for the Henyey-Greenstein scattering function in a wide range of albedos and optical thicknesses. Possible applications of the derived analytical solution to identification problems are discussed.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Models, Biological , Nephelometry and Turbidimetry/methods , Radiometry/methods , Refractometry/methods , Absorption , Computer Simulation , Light , Scattering, Radiation
8.
Appl Opt ; 44(33): 7021-31, 2005 Nov 20.
Article in English | MEDLINE | ID: mdl-16318169

ABSTRACT

An improved method used to determine the absorption and scattering characteristics of a weakly absorbing substance containing bubbles is suggested. The identification procedure is based on a combination of directional-hemispherical measurements and predictions of Mie-scattering theory including approximate relations for a medium with polydisperse bubbles. A modified two-flux approximation is suggested for the calculation of directional-hemispherical transmittance and reflectance of a refracting and scattering medium. The complete identification procedure gives not only the spectral radiative properties but also the volume fraction of bubbles and the characteristics of possible impurity of the medium. This procedure is used to obtain new data on near-infrared properties of fused-quartz samples containing bubbles.

9.
J Opt Soc Am A Opt Image Sci Vis ; 21(1): 149-59, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14725407

ABSTRACT

We report experimental measurement of radiation characteristics of fused quartz containing bubbles over the spectral region from 1.67 to 3.5 microm. The radiation characteristics were retrieved by an inverse method that minimizes the quadratic difference between the measured and the calculated spectral bidirectional transmittance and reflectance for different sample thicknesses. The theoretical spectral transmittances and reflectances were computed by solving the one-dimensional radiative transfer equation by the discrete-ordinates method for a nonemitting, homogeneous, and scattering medium. The results of the inversion were shown to be independent of the sample thickness for samples thicker than 3 mm and clearly demonstrate that bubbles have an effect on the radiation characteristics of fused quartz.

SELECTION OF CITATIONS
SEARCH DETAIL
...