Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(11)2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32517344

ABSTRACT

In the current work an experimental method is used in order to calculate the diffusivity D (diffusion coefficient) of various vapors in thin zeolite films. The method is based on adsorption data from magnetoelastic sensors on top of which a zeolite layer was synthesized, and the diffusivity is extracted by fitting the data to Fick's laws of diffusion. In particular, the method is demonstrated for two volatile organic compound (VOC) vapors on two different zeolites, the p-Xylene adsorption in Faujasite type zeolite with D=1.89×10-13 m2/s at 120 °C and the propene adsorption in Linde Type A type zeolite with D=5.9×10-14 m2/s at 80 °C, two diffusion coefficients which are extracted experimentally for first time. Our results are within the order of magnitude of other VOC/zeolite values reported in literature.

2.
Nat Commun ; 5: 5539, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25412574

ABSTRACT

Unravelling the complexity of the macroscopic world relies on understanding the scaling of single-molecule interactions towards integral macroscopic interactions. Here, we demonstrate the scaling of single acid-amine interactions through a synergistic experimental approach combining macroscopic surface forces apparatus experiments and single-molecule force spectroscopy. This experimental framework is ideal for testing the well-renowned Jarzynski's equality, which relates work performed under non-equilibrium conditions with equilibrium free energy. Macroscopic equilibrium measurements scale linearly with the number density of interfacial bonds, providing acid-amine interaction energies of 10.9 ± 0.2 kT. Irrespective of how far from equilibrium single-molecule experiments are performed, the Jarzynski's free energy converges to 11 ± 1 kT. Our results validate the applicability of Jarzynski's equality to unravel the scaling of non-equilibrium single-molecule experiments to scenarios where large numbers of molecules interacts simultaneously in equilibrium. The developed scaling strategy predicts large-scale properties such as adhesion or cell-cell interactions on the basis of single-molecule measurements.


Subject(s)
Cell Adhesion/physiology , Cell Membrane/physiology , Thermodynamics , Acids/metabolism , Amines/metabolism , Cell Communication , Energy Transfer , Lipid Bilayers/metabolism , Microscopy, Atomic Force , Nanotechnology , Spectrophotometry, Atomic
3.
ACS Nano ; 8(10): 10870-7, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25289697

ABSTRACT

Strong and particularly long ranged (>100 nm) interaction forces between apposing hydrophobic lipid monolayers are now well understood in terms of a partial turnover of mobile lipid patches, giving rise to a correlated long-range electrostatic attraction. Here we describe similarly strong long-ranged attractive forces between self-assembled monolayers of carboranethiols, with dipole moments aligned either parallel or perpendicular to the surface, and hydrophobic lipid monolayers deposited on mica. We compare the interaction forces measured at very different length scales using atomic force microscope and surface forces apparatus measurements. Both systems gave a long-ranged exponential attraction with a decay length of 2.0 ± 0.2 nm for dipole alignments perpendicular to the surface. The effect of dipole alignment parallel to the surface is larger than for perpendicular dipoles, likely due to greater lateral correlation of in-plane surface dipoles. The magnitudes and range of the measured interaction forces also depend on the surface area of the probe used: At extended surfaces, dipole alignment parallel to the surface leads to a stronger attraction due to electrostatic correlations of freely rotating surface dipoles and charge patches on the apposing surfaces. In contrast, perpendicular dipoles at extended surfaces, where molecular rotation cannot lead to large dipole correlations, do not depend on the scale of the probe used. Our results may be important to a range of scale-dependent interaction phenomena related to solvent/water structuring on dipolar and hydrophobic surfaces at interfaces.

4.
ACS Nano ; 8(6): 5979-87, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24826945

ABSTRACT

Electrochemical solid|liquid interfaces are critically important for technological applications and materials for energy storage, harvesting, and conversion. Yet, a real-time Angstrom-resolved visualization of dynamic processes at electrified solid|liquid interfaces has not been feasible. Here we report a unique real-time atomistic view into dynamic processes at electrochemically active metal interfaces using white light interferometry in an electrochemical surface forces apparatus. This method allows simultaneous deciphering of both sides of an electrochemical interface-the solution and the metal side-with microsecond resolution under dynamically evolving reactive conditions that are inherent to technological systems in operando. Quantitative in situ analysis of the potentiodynamic electrochemical oxidation/reduction of noble metal surfaces shows that Angstrom thick oxides formed on Au and Pt are high-ik materials; that is, they are metallic or highly defect-rich semiconductors, while Pd forms a low-ik oxide. In contrast, under potentiostatic growth conditions, all noble metal oxides exhibit a low-ik behavior. On the solution side, we reveal hitherto unknown strong electrochemical reaction forces, which are due to temporary charge imbalance in the electric double layer caused by depletion/generation of charged species. The real-time capability of our approach reveals significant time lags between electron transfer, oxide reduction/oxidation, and solution side reaction during a progressing electrode process. Comparing the kinetics of solution and metal side responses provides evidence that noble metal oxide reduction proceeds via a hydrogen adsorption and subsequent dissolution/redeposition mechanism. The presented approach may have important implications for designing emerging materials utilizing electrified interfaces and may apply to bioelectrochemical processes and signal transmission.


Subject(s)
Electrochemistry/methods , Metals/chemistry , Nanotechnology/methods , Catalysis , Drug Carriers , Gold/chemistry , Materials Testing , Metal Nanoparticles/chemistry , Optics and Photonics , Oxides/chemistry , Oxygen/chemistry , Platinum/chemistry , Semiconductors
5.
Langmuir ; 30(15): 4322-32, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24655312

ABSTRACT

Ions and water structuring at charged-solid/electrolyte interfaces and forces arising from interfacial structuring in solutions above 100 mM concentrations dominate structure and functionality in many physiological, geological, and technological systems. In these concentrations, electrolyte structuring occurs within the range of molecular dimensions. Here, we quantitatively measure and describe electric double layer (EDL) and adhesive interactions at mica-interfaces in aqueous CsCl and LiCl solutions with concentrations ranging from 50 mM to 3 M. Complementarily, using atomic force microscopy and surface forces apparatus experiments we characterize concentration-dependent stark differences in the inner and outer EDL force profiles, and discuss differences between the used methods. From 50 mM to 1 M concentrations, interactions forces measured in CsCl-solutions exhibit strong hydration repulsions, but no diffuse EDL-repulsions beyond the Stern layer. In confinement the weakly hydrated Cs(+) ions condensate into the mica-lattice screening the entire surface charge within the Stern layer. In contrast, strongly hydrated Li(+) ions only partially compensate the surface charge within the Stern layer, leading to the formation of a diffuse outer double layer with DLVO behavior. Both LiCl and CsCl solutions exhibit oscillatory ion-hydration forces at surface separations from 2.2 nm to 4-8 Å. Below 4-8 Å the force profiles are dominated in both cases by forces originating from water and/or ion confinement at the solid/electrolyte/solid interface. Adhesive minima and their location vary strongly with the electrolyte and its concentration due to specific ion correlations across the interface, while dispersion forces between the surfaces are overpowered. Highly concentrated 3 M solutions exhibit solidification of the inner EDL structure and an unexpected formation of additional diffuse EDL forces with an increasing range, as recently measured in ionic liquids. Our results may have important implications for understanding and modeling of interaction forces present in static and dynamic systems under physiological and high salt conditions.


Subject(s)
Aluminum Silicates/chemistry , Cesium/chemistry , Chlorides/chemistry , Electrolytes/chemistry , Lithium Chloride/chemistry , Surface Properties
6.
Analyst ; 134(10): 2118-22, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19768223

ABSTRACT

This report presents the development of new selective gas sensors utilizing a b-oriented silicalite-1 layer-magneto-elastic ribbon assembly. The key principle for the operation of these sensors is monitoring the changes in the resonance frequency of the Metglas strip in relation to the concentration of a component in the gas phase. This technique provides a simple way for monitoring the effects of the amount of adsorbed gases in the silicalite-1 coating. The thickness of the zeolite layer is that of a single crystal. The silicalite-1 crystals are oriented in the b-direction, meaning that the straight channels are perpendicular to the sensor surface, which is confirmed by X-ray diffraction (XRD) analysis. The sensor was able to repeatedly sense carbon dioxide in air and could discriminate between linear and branched hydrocarbons. The sensor was able to detect n-butane, while it did not respond to the presence of iso-butane, indicating sensing selectivity.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Magnetics , Zeolites/chemistry , Elasticity , Free Radicals/chemistry , Gases/analysis , Gases/chemistry , Membranes, Artificial , Microscopy, Electron, Scanning , Oxidants/chemistry , Oxygen/chemistry , Ozone/chemistry , Temperature , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...