Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Meat Sci ; 195: 109005, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36272312

ABSTRACT

The application of individual spectroscopic techniques for meat analysis has been widely explored. Attempts to fuse data from multiple spectroscopic instruments for meat analysis are still lacking. Comparative assessment of the performance of mid infrared (MIR), near infrared (NIR) and Raman spectroscopy to estimate fatty acid (FA) composition in processed lamb was investigated. The acquired data from these individual techniques were then utilised in estimating similar parameters using a multi-block partial least square data fusion approach. Model performance was assessed with respect to the determination coefficient and ratio of predictive deviation upon cross-validation of the model. The fused data had slight improvements for the prediction of four FA parameters including MUFA, C18:0, C18:1 c9 and C9, t11- CLA), suggesting possible information enhancement with use of multiple instruments. However, MIR offered better predictability (RPD values) across the FA parameters considered.


Subject(s)
Fatty Acids , Red Meat , Sheep , Animals , Fatty Acids/analysis , Meat/analysis , Red Meat/analysis , Least-Squares Analysis , Spectrum Analysis, Raman
2.
Front Genet ; 13: 910413, 2022.
Article in English | MEDLINE | ID: mdl-36246641

ABSTRACT

Enteric methane emissions from ruminants account for ∼35% of New Zealand's greenhouse gas emissions. This poses a significant threat to the pastoral sector. Breeding has been shown to successfully lower methane emissions, and genomic prediction for lowered methane emissions has been introduced at the national level. The long-term genetic impacts of including low methane in ruminant breeding programs, however, are unknown. The success of the New Zealand sheep industry is currently heavily reliant on the prolificacy, fecundity and survival of adult ewes. The objective of this study was to determine genetic and phenotypic correlations between adult maternal ewe traits (live weight, body condition score, number of lambs born, litter survival to weaning, pregnancy scanning and fleece weight), faecal and Nematodirus egg counts and measures of methane in respiration chambers. More than 9,000 records for methane from over 2,200 sheep measured in respiration chambers were collected over 10 years. Sheep were fed on a restricted diet calculated as approximately twice the maintenance. Methane measures were converted to absolute daily emissions of methane measured in g per day (CH4/day). Two measures of methane yield were recorded: the ratio of CH4 to dry matter intake (g CH4/kg DMI; CH4/DMI) and the ratio of CH4 to total gas emissions (CH4/(CH4 + CO2)). Ewes were maintained in the flocks for at least two parities. Non-methane trait data from over 8,000 female relatives were collated to estimate genetic correlations. Results suggest that breeding for low CH4/DMI is unlikely to negatively affect faecal egg counts, adult ewe fertility and litter survival traits, with no evidence for significant genetic correlations. Fleece weight was unfavourably (favourably) correlated with CH4/DMI (rg = -0.21 ± 0.09). Live weight (rg = 0.3 ± 0.1) and body condition score (rg = 0.2 ± 0.1) were positively correlated with methane yield. Comparing the two estimates of methane yield, CH4/DMI had lower heritability and repeatability. However, correlations of both measures with adult ewe traits were similar. This suggests that breeding is a suitable mitigation strategy for lowering methane yield, but wool, live weight and fat deposition traits may be affected over time and should be monitored.

3.
J Sci Food Agric ; 102(11): 4813-4819, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35229322

ABSTRACT

BACKGROUND: This study explored the genetic variability in the New Zealand sheep population for economically important skin traits. Skins were collected at slaughter from two progeny test flocks, resulting in 725 skins evaluated for grain strain, flatness, crust leather strength and overall suitability for shoe leather. DNA profiles collected from skins post-slaughter were matched to individual animals using previously collected high-density genotypes. RESULTS: Considerable phenotypic variation for skin traits was observed, with around 40% of the skins being identified as suitable for high-value shoe leather production. Several key traits associated with leather production, including flatness, tear strength, grain strength and grain strain were found to be moderate to highly heritable (h2 = 0.28-0.82). There were no major significant genome-wide association study (GWAS) peaks associated with many of the traits examined, however, one single-nucleotide polymorphism (SNP) reached significance for the flatness of the skin over the hindquarters. CONCLUSION: This research confirms that suitable lamb skins can be bred for use as high-value shoe leather. While moderately to highly heritable, skin traits in New Zealand lambs appear to be polygenic with no genes of major effect underlaying the traits of interest. Given the complex nature of these traits, the identification and selection of animals with higher-value skins may be enabled by geomic selection. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Genome-Wide Association Study , Plant Breeding , Animals , New Zealand , Polymorphism, Single Nucleotide , Sheep/genetics , Skin
4.
Food Chem ; 361: 130154, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34077882

ABSTRACT

The implementation of Raman and infrared spectroscopy with three data fusion strategies to predict pH and % IMF content of red meat was investigated. Raman and FTIR systems were utilized to assess quality parameters of intact red meat. Quantitative models were built using PLS, with model performances assessed with respect to the determination coefficient (R2), root mean square error and normalized root mean square error (NRMSEP). Results obtained on validation against an independent test set show that the high-level fusion strategy had the best performance in predicting the observed pH; with RP2 and NRMSEP values of 0.73 and 12.9% respectively, whereas low-level fusion strategy showed promise in predicting % IMF (NRMSEP = 8.5%). The fusion of data from more than one technique at low and high level resulted in improvement in the model performances; highlighting the possibility of information enhancement.


Subject(s)
Food Analysis/methods , Red Meat/analysis , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Animals , Food Quality , Hydrogen-Ion Concentration , Signal Processing, Computer-Assisted
5.
Food Chem ; 343: 128441, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33127228

ABSTRACT

With increasing demand for fast and reliable techniques for intact meat discrimination, we explore the potential of Raman spectroscopy in combination with three chemometric techniques to discriminate beef, lamb and venison meat samples. Ninety (90) intact red meat samples were measured using Raman spectroscopy, with the acquired spectral data preprocessed using a combination of rubber-band baseline correction, Savitzky-Golay smoothing and standard normal variate transformation. PLSDA and SVM classification were utilized in building classification models for the meat discrimination, whereas PCA was used for exploratory studies. Results obtained using linear and non-linear kernel SVM models yielded sensitivities of over 87 and 90 % respectively, with the corresponding specificities above 88 % on validation against a test set. The PLSDA model yielded over 80 % accuracy in classifying each of the meat specie. PLSDA and SVM classification models in combination with Raman spectroscopy posit an effective technique for red meat discrimination.


Subject(s)
Food Analysis/methods , Meat/analysis , Spectrum Analysis, Raman/methods , Animals , Cattle , Deer , Female , Food Analysis/statistics & numerical data , Least-Squares Analysis , Male , New Zealand , Principal Component Analysis , Red Meat/analysis , Sheep , Species Specificity , Support Vector Machine
6.
J Anim Sci ; 96(8): 3031-3042, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-29741677

ABSTRACT

Methane (CH4) emission traits were previously found to be heritable and repeatable in sheep fed alfalfa pellets in respiration chambers (RC). More rapid screening methods are, however, required to increase genetic progress and to provide a cost-effective method to the farming industry for maintaining the generation of breeding values in the future. The objective of the current study was to determine CH4 and carbon dioxide (CO2) emissions using several 1-h portable accumulation chamber (PAC) measurements from lambs and again as ewes while grazing ryegrass-based pasture. Many animals with PAC measurements were also measured in RC while fed alfalfa pellets at 2.0 × maintenance metabolizable energy requirements (MEm). Heritability estimates from mixed models for CH4 and CO2 production (g/d) were 0.19 and 0.16, respectively, when measured using PAC with lambs; 0.20 and 0.27, respectively, when measured using PAC with ewes; and 0.23 and 0.34, respectively, when measured using RC with lambs. For measured gas traits, repeatabilities of measurements collected 14 d apart ranged from 0.33 to 0.55 for PAC (combined lambs and ewes) and were greater at 0.65 to 0.76 for the same traits measured using RC. Genetic correlations (rg) between PAC in lambs and ewes were 0.99 for CH4, 0.93 for CH4 + CO2, and 0.85 for CH4/(CH4 + CO2), suggesting that CH4 emissions in lambs and ewes are the same trait. Genetic correlations between PAC and RC measurements were lower, at 0.62 to 0.67 for CH4 and 0.41 to 0.42 for CH4 + CO2, likely reflecting different environmental conditions associated with the protocols used with the 2 measurement methods. The CH4/(CH4 + CO2) ratio was the most similar genetic trait measured using PAC (both lambs and ewes, 63% and 66% selection efficiency, respectively) compared with CH4 yield (g/kg DMI) measured using RC. These results suggest that PAC measurements have considerable value as a rapid low-cost method to estimate breeding values for CH4 emissions in sheep.


Subject(s)
Carbon Dioxide/metabolism , Methane/metabolism , Sheep/metabolism , Animals , Breeding , Carbon Dioxide/analysis , Female , Genotype , Male , Medicago sativa , Methane/analysis , Phenotype , Respiration , Sheep/genetics
7.
BMC Genet ; 18(1): 25, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28288558

ABSTRACT

BACKGROUND: Knowledge about the genetic diversity of a population is a crucial parameter for the implementation of successful genomic selection and conservation of genetic resources. The aim of this research was to establish the scientific basis for the implementation of genomic selection in a composite Terminal sheep breeding scheme by providing consolidated linkage disequilibrium (LD) measures across SNP markers, estimating consistency of gametic phase between breed-groups, and assessing genetic diversity measures, such as effective population size (Ne), and population structure parameters, using a large number of animals (n = 14,845) genotyped with a high density SNP chip (606,006 markers). Information generated in this research will be useful for optimizing molecular breeding values predictions and managing the available genetic resources. RESULTS: Overall, as expected, levels of pairwise LD decreased with increasing distance between SNP pairs. The mean LD r2 between adjacent SNP was 0.26 ± 0.10. The most recent effective population size for all animals (687) and separately per breed-groups: Primera (974), Lamb Supreme (380), Texel (227) and Dual-Purpose (125) was quite variable. The genotyped animals were outbred or had an average low level of inbreeding. Consistency of gametic phase was higher than 0.94 for all breed pairs at the average distance between SNP on the chip (~4.74 kb). Moreover, there was not a clear separation between the breed-groups based on principal component analysis, suggesting that a mixed-breed training population for calculation of molecular breeding values would be beneficial. CONCLUSIONS: This study reports, for the first time, estimates of linkage disequilibrium, genetic diversity and population structure parameters from a genome-wide perspective in New Zealand Terminal Sire composite sheep breeds. The levels of linkage disequilibrium indicate that genomic selection could be implemented with the high density SNP panel. The moderate to high consistency of gametic phase between breed-groups and overlapping population structure support the pooling of the animals in a mixed training population for genomic predictions. In addition, the moderate to high Ne highlights the need to genotype and phenotype a large training population in order to capture most of the haplotype diversity and increase accuracies of genomic predictions. The results reported herein are a first step toward understanding the genomic architecture of a Terminal Sire composite sheep population and for the optimal implementation of genomic selection and genome-wide association studies in this sheep population.


Subject(s)
Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , Female , Genetic Markers/genetics , Genotype , Linkage Disequilibrium , Male , Population Density
8.
BMC Genet ; 18(1): 7, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28122512

ABSTRACT

BACKGROUND: New Zealand has some unique Terminal Sire composite sheep breeds, which were developed in the last three decades to meet commercial needs. These composite breeds were developed based on crossing various Terminal Sire and Maternal breeds and, therefore, present high genetic diversity compared to other sheep breeds. Their breeding programs are focused on improving carcass and meat quality traits. There is an interest from the industry to implement genomic selection in this population to increase the rates of genetic gain. Therefore, the main objectives of this study were to determine the accuracy of predicted genomic breeding values for various growth, carcass and meat quality traits using a HD SNP chip and to evaluate alternative genomic relationship matrices, validation designs and genomic prediction scenarios. A large multi-breed population (n = 14,845) was genotyped with the HD SNP chip (600 K) and phenotypes were collected for a variety of traits. RESULTS: The average observed accuracies (± SD) for traits measured in the live animal, carcass, and, meat quality traits ranged from 0.18 ± 0.07 to 0.33 ± 0.10, 0.28 ± 0.09 to 0.55 ± 0.05 and 0.21 ± 0.07 to 0.36 ± 0.08, respectively, depending on the scenario/method used in the genomic predictions. When accounting for population stratification by adjusting for 2, 4 or 6 principal components (PCs) the observed accuracies of molecular breeding values (mBVs) decreased or kept constant for all traits. The mBVs observed accuracies when fitting both G and A matrices were similar to fitting only G matrix. The lowest accuracies were observed for k-means cross-validation and forward validation performed within each k-means cluster. CONCLUSIONS: The accuracies observed in this study support the feasibility of genomic selection for growth, carcass and meat quality traits in New Zealand Terminal Sire breeds using the Ovine HD SNP chip. There was a clear advantage on using a mixed training population instead of performing analyzes per genomic clusters. In order to perform genomic predictions per breed group, genotyping more animals is recommended to increase the size of the training population within each group and the genetic relationship between training and validation populations. The different scenarios evaluated in this study will help geneticists and breeders to make wiser decisions in their breeding programs.


Subject(s)
Breeding , Genomics , Meat , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sheep/growth & development , Sheep/genetics , Animals , Female , Genotype , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...