Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38490181

ABSTRACT

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Subject(s)
Zona Pellucida Glycoproteins , Humans , Male , Semen , Spermatozoa/chemistry , Spermatozoa/metabolism , Zona Pellucida/chemistry , Zona Pellucida/metabolism , Zona Pellucida Glycoproteins/chemistry , Zona Pellucida Glycoproteins/metabolism , Ovum/chemistry , Ovum/metabolism , Female
2.
J Gen Physiol ; 155(10)2023 10 02.
Article in English | MEDLINE | ID: mdl-37561060

ABSTRACT

Fertilization of an egg by more than one sperm, a condition known as polyspermy, leads to gross chromosomal abnormalities and is embryonic lethal for most animals. Consequently, eggs have evolved multiple processes to stop supernumerary sperm from entering the nascent zygote. For external fertilizers, such as frogs and sea urchins, fertilization signals a depolarization of the egg membrane, which serves as the fast block to polyspermy. Sperm can bind to, but will not enter, depolarized eggs. In eggs from the African clawed frog, Xenopus laevis, the fast block depolarization is mediated by the Ca2+-activated Cl- channel TMEM16A. To do so, fertilization activates phospholipase C, which generates IP3 to signal a Ca2+ release from the ER. Currently, the signaling pathway by which fertilization activates PLC during the fast block remains unknown. Here, we sought to uncover this pathway by targeting the canonical activation of the PLC isoforms present in the X. laevis egg: PLCγ and PLCß. We observed no changes to the fast block in X. laevis eggs inseminated in inhibitors of tyrosine phosphorylation, used to stop activation of PLCγ, or inhibitors of Gαq/11 pathways, used to stop activation of PLCß. These data suggest that the PLC that signals the fast block depolarization in X. laevis is activated by a novel mechanism.


Subject(s)
Calcium , Fertilization , Animals , Male , Fertilization/physiology , Xenopus laevis/metabolism , Calcium/metabolism , Semen/metabolism , Spermatozoa/metabolism
3.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778253

ABSTRACT

Fertilization of eggs from the African clawed frog Xenopus laevis is characterized by an increase in cytosolic calcium, a phenomenon that is also observed in other vertebrates such as mammals and birds. During fertilization in mammals and birds, the transfer of the soluble PLCζ from sperm into the egg is thought to trigger the release of calcium from the endoplasmic reticulum (ER). Injecting sperm extracts into eggs reproduces this effect, reinforcing the hypothesis that a sperm factor is responsible for calcium release and egg activation. Remarkably, this occurs even when sperm extracts from X. laevis are injected into mouse eggs, suggesting that mammals and X. laevis share a sperm factor. However, X. laevis lacks an annotated PLCZ1 gene, which encodes the PLCζ enzyme. In this study, we attempted to determine whether sperm from X. laevis express an unannotated PLCZ1 ortholog. We identified PLCZ1 orthologs in 11 amphibian species, including 5 that had not been previously characterized, but did not find any in either X. laevis or the closely related Xenopus tropicalis. Additionally, we performed RNA sequencing on testes obtained from adult X. laevis males and did not identify potential PLCZ1 orthologs in our dataset or in previously collected ones. These findings suggest that PLCZ1 may have been lost in the Xenopus lineage and raise the question of how fertilization triggers calcium release and egg activation in these species.

4.
J Biol Chem ; 298(8): 102264, 2022 08.
Article in English | MEDLINE | ID: mdl-35843309

ABSTRACT

TransMEMbrane 16A (TMEM16A) is a Ca2+-activated Cl- channel that plays critical roles in regulating diverse physiologic processes, including vascular tone, sensory signal transduction, and mucosal secretion. In addition to Ca2+, TMEM16A activation requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural determinants mediating this interaction are not clear. Here, we interrogated the parts of the PI(4,5)P2 head group that mediate its interaction with TMEM16A by using patch- and two-electrode voltage-clamp recordings on oocytes from the African clawed frog Xenopus laevis, which endogenously express TMEM16A channels. During continuous application of Ca2+ to excised inside-out patches, we found that TMEM16A-conducted currents decayed shortly after patch excision. Following this rundown, we show that the application of a synthetic PI(4,5)P2 analog produced current recovery. Furthermore, inducible dephosphorylation of PI(4,5)P2 reduces TMEM16A-conducted currents. Application of PIP2 analogs with different phosphate orientations yielded distinct amounts of current recovery, and only lipids that include a phosphate at the 4' position effectively recovered TMEM16A currents. Taken together, these findings improve our understanding of how PI(4,5)P2 binds to and potentiates TMEM16A channels.


Subject(s)
Phosphates , Phosphatidylinositol 4,5-Diphosphate , Animals , Calcium/metabolism , Chloride Channels/metabolism , Phosphates/chemistry , Phosphates/metabolism , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Xenopus laevis/metabolism
5.
Genome Res ; 31(5): 834-851, 2021 05.
Article in English | MEDLINE | ID: mdl-33906962

ABSTRACT

Toxoplasma gondii is a useful model for intracellular parasitism given its ease of culture in the laboratory and genomic resources. However, as for many other eukaryotes, the T. gondii genome contains hundreds of sequence gaps owing to repetitive and/or unclonable sequences that disrupt the assembly process. Here, we use the Oxford Nanopore Minion platform to generate near-complete de novo genome assemblies for multiple strains of T. gondii and its near relative, N. caninum We significantly improved T. gondii genome contiguity (average N50 of ∼6.6 Mb) and added ∼2 Mb of newly assembled sequence. For all of the T. gondii strains that we sequenced (RH, ME49, CTG, II×III progeny clones CL13, S27, S21, S26, and D3X1), the largest contig ranged in size between 11.9 and 12.1 Mb in size, which is larger than any previously reported T. gondii chromosome, and found to be due to a consistent fusion of Chromosomes VIIb and VIII. These data were validated by mapping existing T. gondii ME49 Hi-C data to our assembly, providing parallel lines of evidence that the T. gondii karyotype consists of 13, rather than 14, chromosomes. By using this technology, we also resolved hundreds of tandem repeats of varying lengths, including in well-known host-targeting effector loci like rhoptry protein 5 (ROP5) and ROP38 Finally, when we compared T. gondii with N. caninum, we found that although the 13-chromosome karyotype was conserved, extensive, previously unappreciated chromosome-scale rearrangements had occurred in T. gondii and N. caninum since their most recent common ancestry.


Subject(s)
Toxoplasma , DNA Copy Number Variations , Genome , Karyotype , Sequence Analysis, DNA , Toxoplasma/genetics
6.
PLoS Biol ; 18(7): e3000811, 2020 07.
Article in English | MEDLINE | ID: mdl-32735558

ABSTRACT

One of the earliest and most prevalent barriers to successful reproduction is polyspermy, or fertilization of an egg by multiple sperm. To prevent these supernumerary fertilizations, eggs have evolved multiple mechanisms. It has recently been proposed that zinc released by mammalian eggs at fertilization may block additional sperm from entering. Here, we demonstrate that eggs from amphibia and teleost fish also release zinc. Using Xenopus laevis as a model, we document that zinc reversibly blocks fertilization. Finally, we demonstrate that extracellular zinc similarly disrupts early embryonic development in eggs from diverse phyla, including Cnidaria, Echinodermata, and Chordata. Our study reveals that a fundamental strategy protecting human eggs from fertilization by multiple sperm may have evolved more than 650 million years ago.


Subject(s)
Fertilization , Oocytes/metabolism , Zinc/metabolism , Ambystoma mexicanum , Animals , Female , Hydrozoa , Male , Strongylocentrotus purpuratus , Xenopus laevis , Zebrafish
7.
Trends Biochem Sci ; 44(10): 823-826, 2019 10.
Article in English | MEDLINE | ID: mdl-31447243

ABSTRACT

The Ca2+-conducting ion channel, CatSper, is expressed exclusively on the sperm flagellum and regulates sperm motility. A new study (Hwang et al., Cell, 2019) reveals that the pH-sensing and Ca2+-binding protein, EFCAB9, is a subunit of the CatSper channel and has a key role in triggering mammalian sperm to change their swimming at fertilization.


Subject(s)
Calcium , Sperm Motility , Animals , Calcium Channels , Humans , Hydrogen-Ion Concentration , Male , Spermatozoa
8.
J Biol Chem ; 294(33): 12556-12564, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31266809

ABSTRACT

Transmembrane member 16A (TMEM16A) is a widely expressed Ca2+-activated Cl- channel with various physiological functions ranging from mucosal secretion to regulating smooth muscle contraction. Understanding how TMEM16A controls these physiological processes and how its dysregulation may cause disease requires a detailed understanding of how cellular processes and second messengers alter TMEM16A channel gating. Here we assessed the regulation of TMEM16A gating by recording Ca2+-evoked Cl- currents conducted by endogenous TMEM16A channels expressed in Xenopus laevis oocytes, using the inside-out configuration of the patch clamp technique. During continuous application of Ca2+, we found that TMEM16A-conducted currents decay shortly after patch excision. Such current rundown is common among channels regulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Thus, we sought to investigate a possible role of PIP2 in TMEM16A gating. Consistently, synthetic PIP2 rescued the current after rundown, and the application of PIP2 modulating agents altered the speed kinetics of TMEM16A current rundown. First, two PIP2 sequestering agents, neomycin and anti-PIP2, applied to the intracellular surface of excised patches sped up TMEM16A current rundown to nearly twice as fast. Conversely, rephosphorylation of phosphatidylinositol (PI) derivatives into PIP2 using Mg-ATP or inhibiting dephosphorylation of PIP2 using ß-glycerophosphate slowed rundown by nearly 3-fold. Our results reveal that TMEM16A regulation is more complicated than it initially appeared; not only is Ca2+ necessary to signal TMEM16a opening, but PIP2 is also required. These findings improve our understanding of how the dysregulation of these pathways may lead to disease and suggest that targeting these pathways could have utility for potential therapies.


Subject(s)
Calcium Signaling , Calcium/metabolism , Chloride Channels/metabolism , Ion Channel Gating , Membrane Potentials , Phosphatidylinositol 4,5-Diphosphate/metabolism , Animals , Chloride Channels/genetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...