Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Biochim Biophys Acta ; 923(3): 421-30, 1987 Mar 19.
Article in English | MEDLINE | ID: mdl-3828383

ABSTRACT

Organothallium(III) reagents, by analogy with organomercurials, have been found to rapidly label phosphoglycerate kinase from rabbit muscle. By use of a radio-labelled version of p-methylphenylthallium(III) bis-trifluoroacetate (MPT) the inhibition was shown to be irreversible by the criterion of gel filtration desalting. The rate of labelling was shown to depend on the temperature, enzyme and thallium reagent concentrations, and the presence or absence of the various substrates of the enzyme. The structure and oxidation state of the thallium reagent used affected the extent of modification by the compounds MPT, o-carboxyphenylthallium(III) bis-trifluoroacetate, thallic trifluoroacetate and thallous acetate. A number of pieces of evidence implicate cysteine residues in the labelling, including changes in the free thiol titre of the enzyme on thalliation, model studies on the interaction of thiols (e.g. glutathione) with thallium(III) and thallous materials, the lack of inactivation of phosphoglycerate kinase from yeast (which has only one thiol residue distant from the active site), and the partial restoration of enzymic activity by treatment of thalliated enzyme with sulphydryl reducing agents. Substrate protection studies showed that modification of rabbit muscle phosphoglycerate kinase by MPT was fully prevented by 3-phosphoglycerate and partially by MgATP. The latter protected only against the fast phase of thallic modification, the slower phase being unaffected. The presence of MgADP potentiated the labelling by MPT. No evidence of an MgADP-induced conformational change in the enzyme could be obtained from fluorescence or circular dichroic spectroscopies, although changes of the native spectra were noted on thalliation by MPT alone. The cross-linking potential of these arylthallium(III) reagents is discussed along with conformational changes required to trigger the hinge-movement between the N- and C-domains of the protein.


Subject(s)
Macromolecular Substances , Muscles/enzymology , Organometallic Compounds , Phosphoglycerate Kinase/metabolism , Thallium , Animals , Chemical Phenomena , Chemistry , Circular Dichroism , Drug Interactions , Enzyme Activation , Indicators and Reagents , Organometallic Compounds/pharmacology , Rabbits , Sulfhydryl Compounds/pharmacology , Yeasts/enzymology
3.
Biochim Biophys Acta ; 923(1): 66-73, 1987 Jan 20.
Article in English | MEDLINE | ID: mdl-2432944

ABSTRACT

As an extension of work on the inhibition of enzymes by arylthallium(III) reagents, the thallium analogues of the organomercurials, we have studied the interactions of these molecules with transfer RNA. In contrast to thallous acetate, thallium(III) derivatives (thallic trifluoroacetate, p-methylphenylthallium(III) bis-trifluoroacetate (MPT) and o-carboxyphenylthallium(III) bis-trifluoroacetate) bound to Escherichia coli tRNA. The interaction was fully reversible upon Sephadex G-25 gel filtration, and binding constants and stoichiometries were evaluated by a number of procedures. The likely site of interaction was shown to be the thiouridine residue (s4U8) based on changes induced by MPT on the absorbance around 330 nm. No changes in stacking interactions could be detected from the absorption or circular dichroic spectra. The detailed structure of the groups on thallium(III) affected the interaction with tRNA. Thalliation at s4U8 affects the absorbance at 335 nm and the amino-acid uptake capacity of E. coli tRNAPhe in parallel, the latter being progressively inhibited by increasing amounts of MPT. In a model nucleoside system, uridine disulphide is probably formed from reduced thiouridine by the oxidative action of the Tl(III) reagents. No evidence of cross-linking of E. coli tRNA molecules under gel electrophoretic conditions was obtained in contrast to the model nucleoside. The easily reversible interaction of MPT with sulphur sites in E. coli tRNA contrasts with the stable (to gel filtration) bonds formed between MPT and (thiol) sites in enzymes.


Subject(s)
RNA, Bacterial/metabolism , RNA, Transfer/metabolism , Thallium/metabolism , Chromatography, Gel , Circular Dichroism , Escherichia coli/genetics , Indicators and Reagents , Organometallic Compounds/metabolism , RNA, Transfer, Amino Acyl/metabolism , Spectrophotometry , Thiouridine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL