Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 751: 141855, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32889477

ABSTRACT

PM2.5 is an air pollution metric widely used to assess air quality, with the European Union having set targets for reduction in PM2.5 levels and population exposure. A major challenge for the scientific community is to identify, quantify and characterize the sources of atmospheric particles in the aspect of proposing effective control strategies. In the frame of ICARUS EU2020 project, a comprehensive database including PM2.5 concentration and chemical composition (ions, metals, organic/elemental carbon, Polycyclic Aromatic Hydrocarbons) from three sites (traffic, urban background, rural) of five European cities (Athens, Brno, Ljubljana, Madrid, Thessaloniki) was created. The common and synchronous sampling (two seasons involved) and analysis procedure offered the prospect of a harmonized Positive Matrix Factorization model approach, with the scope of identifying the similarities and differences of PM2.5 key-source chemical fingerprints across the sampling sites. The results indicated that the average contribution of traffic exhausts to PM2.5 concentration was 23.3% (traffic sites), 13.3% (urban background sites) and 8.8% (rural sites). The average contribution of traffic non-exhausts was 12.6% (traffic), 13.5% (urban background) and 6.1% (rural sites). The contribution of fuel oil combustion was 3.8% at traffic, 11.6% at urban background and 18.7% at rural sites. Biomass burning contribution was 22% at traffic sites, 30% at urban background sites and 28% at rural sites. Regarding soil dust, the average contribution was 5% and 8% at traffic and urban background sites respectively and 16% at rural sites. Sea salt contribution was low (1-4%) while secondary aerosols corresponded to the 16-34% of PM2.5. The homogeneity of the chemical profiles as well as their relationship with prevailing meteorological parameters were investigated. The results showed that fuel oil combustion, traffic non-exhausts and soil dust profiles are considered as dissimilar while biomass burning, sea salt and traffic exhaust can be characterized as relatively homogenous among the sites.

2.
Chemosphere ; 241: 125026, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31606570

ABSTRACT

With the principal aim to assess the typical Mediterranean profile of the PM2.5 and PM1 pollution, three intensive monitoring campaigns took place simultaneously within different types of environment across an urban location of the basin. Focusing on the PM components with numerous anthropogenic sources and increased potential health risk, the samples were chemically analyzed for 20 p.m.-bound Polycyclic Aromatic Hydrocarbons (PAHs). Carbonaceous and ionic constituents were quantified as well. In order to uncover the spatiotemporal variation of the PM profile the key sources were identified, the seasonal effects and the role of the prevailing mesoscale atmospheric circulation were evaluated and most importantly the potential health risk was estimated. In general, the pollution status of the basin was the result of a complex interaction between the local and external input with Particulate Organic Matter (POM) and Secondary Inorganic Aerosols (SIA) being the main aerosols' components. PM1 was a better indicator of the anthropogenic emissions while according to the results of factor analysis the co-existence of various combustion sources was determinant. Chemically, the maxima of the ΣPAHs, the differentiation of their structure in accordance with their molecular weight and the distribution of the individual compounds confirmed the significance of the emission sources. Similarly, the estimated carcinogenicity/mutagenicity was emission-dependent with the maximum contribution coming from B[a]P, IndP, B[ghi]Per, B[e]P and B[b]F. Seasonally, the highest potential health risk of the PAHs' mixture was recorded during the cold season while meteorologically, it was mostly associated with the south flow.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Meteorology , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons , Risk Assessment , Aerosols/analysis , Air Pollution/analysis , Greece , Particle Size , Polycyclic Aromatic Hydrocarbons/analysis , Seasons
3.
Sci Total Environ ; 646: 448-459, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30055502

ABSTRACT

In an attempt to investigate the traffic-impacted vertical aerosols profile and its relationship with potential carcinogenicity and/or mutagenicity, samples of different sized airborne particles were collected in parallel at the 1st and 5th floor of a 19 m high building located next to one of the busiest roads of Athens. The maximum daily concentrations were 65.9, 42.5 and 38.5 µg/m3, for PM10, PM2.5 and PM1, respectively. The vertical concentration ratio decreased with increasing height verifying the role of the characteristics of the area (1st/5th floor: 1.21, 1.13, 1.09 for PM10, PM2.5 and PM1, respectively). Chemically, strengthening the previous hypothesis, the collected particles were mainly carbonaceous (68%-93%) with the maximum budget of the polyaromatic hydrocarbons being recorded near the surface (1st/5th floor: 1.84, 1.07, 1.15 for PM10, PM2.5 and PM1, respectively). The detected PM-bound PAHs along with the elements as well as the carbonaceous and ionic constituents were used in a source apportionment study. Exhaust and non-exhaust emissions, a mixed source of biomass burning and high temperature combustion processes (natural gas, gasoline/diesel engines), sea salt, secondary and soil particles were identified as the major contributing sources to the PM pollution of the investigated area. With respect to the health hazards, the calculation of the Benzo[a]Pyrene toxicity equivalency factors underlined the importance of the height of residence in buildings for the level of the exposure (1st/5th floor: B[a]PTEQ: 1.82, 1.12, 1.10, B[a]PMEQ: 1.85, 1.13, 1.09 for PM10, PM2.5 and PM1, respectively). Finally, despite its verified significance as a surrogate compound for the mixture of the hydrocarbons (its contribution up to 72%, 79% on the level of the 1st and 5th floor, respectively), the importance of the incorporation of PAH species in addition to B[a]P when assessing PAH toxicity was clearly documented.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Particulate Matter/analysis , Particle Size , Vehicle Emissions
SELECTION OF CITATIONS
SEARCH DETAIL
...