Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 29(11): 1642-6, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16922282

ABSTRACT

Drying oils identification in art objects is an important step in the scientific investigation of the artifact which provides conservators and art historians with valuable information concerning materials used and painting techniques applied. The present communication is devoted to pitfalls and troubleshooting in drying oils identification by means of GC-MS analysis of fatty acids composition in a microsample of an art object. We demonstrate that in the case of nonlinear instrument response the ratios of palmitic to stearic (P/S), distinctive for each oil type and used for drying oil identification, depend on sample dilution so that different dilutions of the same sample can give different P/S ratios. This phenomenon can hinder drying oil identification and lead to erroneous interpretations. This is an important observation as nowadays very often the P/S ratio is calculated from the corresponding peak area ratios or by the use of one-point calibration method. In these approaches, the linearity of the instrument response is not controlled and ensured. In the case analyzed, the nonlinear instrument response was attributed to incomplete sample evaporation in the injector. Packing of the glass liner with deactivated glass wool improved the sample evaporation and ensured the linearity of the instrument response and independence of the P/S ratio from sample dilution.


Subject(s)
Art , Gas Chromatography-Mass Spectrometry/methods , Plant Oils/chemistry , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry/standards , Palmitic Acid/analysis , Palmitic Acid/standards , Reference Standards , Stearic Acids/analysis , Stearic Acids/standards
2.
J Sep Sci ; 27(3): 167-73, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15334904

ABSTRACT

The materials and especially organic materials used for creation of art objects can be utilized by various microorganisms for their growth and facilitate the microbial colonization of the object. An understanding of the chemical alterations in artefacts caused by the presence of microorganisms can be crucial for correct identification of the materials initially used for the artefact creation--nowadays an important step in restoration and/or art-historical investigation of the art object. The present article describes a model experiment in which we investigated the possible chemical alterations in animal glue films used as substrate for growth of the fungus Aspergillus niger. The sterilized animal glue solution was poured into Petri dishes, inoculated with Aspergillus niger, and subsequently incubated at 15 degrees C for 0, 7, 9, 14, and 28 days. After interruption of incubation, the content of the Petri dish was analyzed for amino acid composition by the GC-MS based method. It was found that the growth of Aspergillus niger on animal glue films did not cause significant changes in the amino acid composition of the film and had no impact on animal glue identification.


Subject(s)
Adhesives/chemistry , Art , Aspergillus niger/growth & development , Paint/analysis , Amino Acids/analysis , Animals , Biodegradation, Environmental , Environmental Microbiology , Gas Chromatography-Mass Spectrometry , Paint/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...