Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(7): 4227-4236, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38848308

ABSTRACT

Anticancer drugs are often associated with limitations such as poor stability in aqueous solutions, limited cell membrane permeability, nonspecific targeting, and irregular drug release when taken orally. One possible solution to these problems is the use of nanocarriers of drug molecules, particularly those with targeting ability, stimuli-responsive properties, and high drug loading capacity. These nanocarriers can improve drug stability, increase cellular uptake, allow specific targeting of cancer cells, and provide controlled drug release. While improving the therapeutic efficacy of cancer drugs, contemporary researchers also aim to reduce their associated side effects, such that cancer patients are offered with a more effective and targeted treatment strategy. Herein, a set of nine porous covalent organic frameworks (COFs) were tested as drug delivery nanocarriers. Among these, paclitaxel loaded in COF-3 was most effective against the proliferation of ovarian cancer cells. This study highlights the emerging potential of COFs in the field of therapeutic drug delivery. Due to their biocompatibility, these porous COFs provide a viable substrate for controlled drug release, making them attractive candidates for improving drug delivery systems. This work also demonstrates the potential of COFs as efficient drug delivery agents, thereby opening up new opportunities in the field of sarcoma therapy.


Subject(s)
Antineoplastic Agents , Drug Carriers , Metal-Organic Frameworks , Ovarian Neoplasms , Paclitaxel , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Drug Carriers/chemistry , Female , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Paclitaxel/therapeutic use , Paclitaxel/chemistry , Paclitaxel/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/therapeutic use , Metal-Organic Frameworks/pharmacology , Cell Line, Tumor , Porosity , Drug Liberation
2.
Mutat Res Rev Mutat Res ; 793: 108490, 2024.
Article in English | MEDLINE | ID: mdl-38460864

ABSTRACT

The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.


Subject(s)
Mitochondria , Mitochondrial Dynamics , Mutation , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Mitochondria/genetics , Mitochondria/metabolism , Mutation/genetics , Mitochondrial Dynamics/genetics , Disease Progression , DNA, Mitochondrial/genetics , Animals , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL