Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 123(26): 5545-5554, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31244101

ABSTRACT

Critical effects have been reported in the case of chemical equilibria, in which the solvent is a binary liquid mixture having a critical point of solution. At atmospheric pressure and for temperatures near the critical point, the critical effect manifests itself as a divergence in the temperature derivative of the extent of reaction. For a critical mixture of isobutyric acid + water (IBA/H2O) serving as the solvent, we report experimental results for three complex equilibria involving (i) parallel dissolution of aluminum oxide and manganese dioxide (involves 8 species); (ii) parallel dissolution of aluminum oxide and copper(I) oxide (involves 10 species); and (iii) dissolution of barium chromate (involves 9 species). In each case, we observe a divergence in the slope of the van't Hoff plot of the extent of reaction in the critical region. By phase rule analysis of these and all other existing data, we find that the chemical equilibrium critical effect occurs in coincidence with three thermodynamic intensive variables being fixed, where two of these are the temperature and the pressure. The slope of the van't Hoff plot in the critical region is observed to diverge toward negative infinity when the reaction is endothermic and toward positive infinity when it is exothermic. These two features are a characteristic of both homogeneous and heterogeneous equilibria and have been observed at both upper and lower critical solution temperatures. Taken together, these observations support the applicability of the universality concept to chemical equilibrium critical phenomena in binary liquid mixtures.

2.
J Phys Chem B ; 122(11): 2949-2956, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29461060

ABSTRACT

We consider the dissolution of a chemically inert solid in a binary liquid mixture with a critical point of solution. When the mixture, acting as the solvent, has come to equilibrium with the solid, the state of the system is completely described by the temperature, pressure, and a concentration variable formed by dividing the molar amount of one solvent component by that of the other. Under conditions of fixed pressure, the principle of critical point isomorphism predicts that the slope of a van't Hoff plot of the solubility of the solid should diverge toward infinity as the temperature enters the critical region. The sign of the divergence is negative when the dissolution is endothermic, whereas it is positive when the dissolution is exothermic. In experiments where excess solid phenolphthalein dissolves in a binary mixture of nitrobenzene + dodecane, we have observed exothermic dissolution concurrently with a positive divergence of the van't Hoff slope. The data are insufficiently precise to compute an accurate numerical value for the exponent of the temperature power law expected to govern this divergence; nevertheless, on the basis of Widom scaling theory, we argue that the exponent should be equal to 0.326, which is identical to the value of the exponent that governs the temperature dependence of the shape of the liquid-liquid coexistence curve. Being entirely physical in nature, the anomalous solubility effect should be observable in the case of any chemically inert solid dissolving in any one of the more than 1000 liquid pairs known to have a critical point of solution.

3.
J Phys Chem A ; 121(42): 8048-8052, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-28953393

ABSTRACT

Liquid mixtures, which have a phase diagram exhibiting a miscibility gap ending in a critical point of solution, have been used as solvents for chemical reactions. The reaction rate in the forward direction has often been observed to slow down as a function of temperature in the critical region. Theories based upon the Gibbs free energy of reaction as the driving force for chemical change have been invoked to explain this behavior. With the assumption that the reaction is proceeding under relaxation conditions, these theories expand the free energy in a Taylor series about the position of equilibrium. Since the free energy is zero at equilibrium, the leading term in the Taylor series is proportional to the first derivative of the free energy with respect to the extent of reaction. To analyze the critical behavior of this derivative, the theories exploit the principle of critical point isomorphism, which is thought to govern all critical phenomena. They find that the derivative goes to zero in the critical region, which accounts for the slowing down observed in the reaction rate. As has been pointed out, however, most experimental rate investigations have been carried out under irreversible conditions as opposed to relaxation conditions [Shen et al. J. Phys. Chem. A 2015, 119, 8784-8791]. Below, we consider a reaction governed by first order kinetics and invoke transition state theory to take into account the irreversible conditions. We express the apparent activation energy in terms of thermodynamic derivatives evaluated under standard conditions as well as the pseudoequilibrium conditions associated with the reactant and the activated complex. We show that these derivatives approach infinity in the critical region. The apparent activation energy follows this behavior, and its divergence accounts for the slowing down of the reaction rate.

4.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 4): 358-70, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25849493

ABSTRACT

Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.


Subject(s)
Macromolecular Substances/chemistry , Neutron Diffraction/methods , Proteins/chemistry , Crystallization , Crystallography
5.
J Phys Chem B ; 119(10): 4041-7, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25668071

ABSTRACT

Binary liquid mixtures having a consolute point can be used as solvents for chemical reactions. When excess cerium(IV) oxide is brought into equilibrium with a mixture of isobutyric acid + water, and the concentration of cerium in the liquid phase is plotted in van't Hoff form, a straight line results for temperatures sufficiently in excess of the critical solution temperature. Within 1 K of the critical temperature, however, the concentration becomes substantially suppressed, and the van't Hoff slope diverges toward negative infinity. According to the phase rule, one mole fraction can be fixed. Given this restriction, the temperature behavior of the data is in exact agreement with the predictions of both the principle of critical point isomorphism and the Gibbs-Helmholtz equation. In addition, we have determined the concentration of lead in the liquid phase when crystalline lead(II) sulfate reacts with potassium iodide in isobutyric acid + water. When plotted in van't Hoff form, the data lie on a straight line for all temperatures including the critical region. The phase rule indicates that two mole fractions can be fixed. With this restriction, the data are in exact agreement with the principle of critical point isomorphism.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 1): 061201, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21797350

ABSTRACT

The mixture of isobutyric acid and water has a consolute point at a temperature of 25.75 °C and mole fraction 0.1148 isobutyric acid. When charcoal is added to this mixture, the concentration of isobutyric acid is reduced by adsorption. We have measured the action of charcoal on solutions of isobutyric acid and water as a function of isobutyric acid mole fraction at temperatures of 25.85 and 32.50 °C. At the higher temperature, the specific adsorption density (y(2)(α)/m) satisfies the Freundlich equation (y(2)(α)/m)=KX(2)(1/n), where y(2)(α) is the mass of isobutyric acid adsorbed, m is the mass of charcoal, X(2) is the equilibrium mole fraction of isobutyric acid, n is the Freundlich index, and K=K(T) is an amplitude that depends upon the temperature T. At 25.85 °C, a critical endpoint is located at an isobutyric acid mole fraction X(2)(ce)=0.09. When compared with the Freundlich equation at this temperature, a plot of the specific adsorption density as a function of X(2) in the vicinity of the critical-endpoint composition assumes a shape which is reminiscent of the derivative of a Dirac delta function. Using critical-point scaling theory, we show that this divergent pattern is consistent with the principle of critical point universality.

7.
J Chem Phys ; 134(15): 154505, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21513393

ABSTRACT

A mixture of isobutyric acid + water has an upper consolute point at 38.8 mass % isobutyric acid and temperature near 26 °C. Nickel (II) oxide dissolves in this mixture by reacting with the acid to produce water and nickel isobutyrate. The solubility of nickel (II) oxide in isobutyric acid + water has been measured as a function of temperature at compositions, 25, 38.8, and 60 mass % isobutyric acid. For values of the temperature, T, which were at least 2 K in excess of the liquid-liquid phase transition temperature, the measured values of the solubility, s, lie on a straight line when plotted in van't Hoff form with ln s versus 1∕T. The slope, (∂ln s∕∂(1∕T)), of the line is negative indicating that the dissolution reaction is endothermic. When the temperature was within 2 K of the phase transition temperature, however, (∂ln s∕∂(1∕T)) diverged toward negative infinity. The principle of critical point universality predicts that when excess solid nickel (II) oxide is in dissolution equilibrium with liquid isobutyric acid + water, (∂ln s∕∂(1∕T)) should diverge upon approaching the consolute point along the critical isopleth at 38.8 mass % isobutyric acid. As determined by the sign of the enthalpy of solution, the sign of this divergence is expected to be negative. Not only do our experiments confirm these predictions, but they also show that identical behavior can be observed at both 25 and 60 mass % isobustyric acid, compositions which lie substantially to either side of the critical composition.

8.
J Phys Chem A ; 114(1): 355-9, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19928887

ABSTRACT

The rate of iodination of acetone has been measured as a function of temperature in the binary solvent isobutyric acid (IBA) + water near the upper consolute point. The reaction mixture was prepared by the addition of acetone, iodine, and potassium iodide to IBA + water at its critical composition of 38.8 mass % IBA. The value of the critical temperature determined immediately after mixing was 25.43 degrees C. Aliquots were extracted from the mixture at regular intervals in order to follow the time course of the reaction. After dilution of the aliquot with water to quench the reaction, the concentration of triiodide ion was determined by the measurement of the optical density at a wavelength of 565 nm. These measurements showed that the kinetics were zeroth order. When at the end of 24 h the reaction had come to equilibrium, the critical temperature was determined again and found to be 24.83 degrees C. An Arrhenius plot of the temperature dependence of the observed rate constant, k(obs), was linear over the temperature range 27.00-38.00 degrees C, but between 25.43 and 27.00 degrees C, the values of k(obs) fell below the extrapolation of the Arrhenius line. This behavior is evidence in support of critical slowing down. Our experimental method and results are significant in three ways: (1) In contrast to in situ measurements of optical density, the determination of the optical density of diluted aliquots avoided any interference from critical opalescence. (2) The measured reaction rate exhibited critical slowing down. (3) The rate law was pseudo zeroth order both inside and outside the critical region, indicating that the reaction mechanism was unaffected by the presence of the critical point.


Subject(s)
Acetone/chemistry , Butyrates/chemistry , Water/chemistry , Isobutyrates , Kinetics , Temperature , Thermodynamics
9.
J Phys Chem A ; 109(21): 4750-7, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-16833817

ABSTRACT

We have measured the rate of carbon dioxide evolution in the aniline catalyzed decomposition of acetone dicarboxylic acid in a mixture of isobutyric acid + water near its consolute point. Within a temperature interval of 1 degrees C, which included the critical solution temperature, the first-order rate constant oscillated in magnitude by about 10% as it passed through three complete cycles of slowing down followed by speeding up. Whereas we can find no ready explanation for the speeding up, we suggest that, because the mixture contained no inert components, the slowing down should belong to the Griffiths-Wheeler class of strong critical effects [Phys. Rev. A 1970, 2, 1047]. As a check on this conclusion, we have measured the rate of the SN1 decomposition of benzene diazonium tetrafluoroborate in 2-butoxyethanol + water near the lower critical solution temperature and also the rate of the acid-catalyzed decomposition of ethyl diazoacetate in isobutyric acid + water near the upper critical solution temperature. Both of these reactions evolve nitrogen. In the first reaction, 2-butoxyethanol is inert, whereas in the second, isobutyric acid is inert. In both cases, because there was one inert component, we regarded the response of the rate constant to temperature in the critical region to be representative of the Griffiths-Wheeler class of weak critical effects. Within our accuracy of measurement of about 2% in the rate constant and about 1 mK in the temperature, we could detect no effect of the critical point on the rates of either of these reactions, suggesting that a weak effect may be too small to be seen with our experimental apparatus. The successful observation of a critical effect in the rate of decomposition of acetone dicarboxylic acid proves, however, that kinetic critical phenomena are observable in heterogeneous reactions.

10.
J Phys Chem B ; 109(36): 17262-6, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16853203

ABSTRACT

We have measured the solubilities of manganese dioxide and aluminum oxide in isobutyric acid + water along its critical isopleth at temperatures above the upper critical solution temperature at 26.2 degrees C. Both oxides are basic anhydrides that react with isobutyric acid to produce the metal isobutyrate and water. In both cases, the measured solubility values, s, were in the parts per million range. When the solubility data for either of these oxides were plotted in van't Hoff form with ln s vs 1/T, a straight line resulted for absolute temperatures, T, sufficiently in excess of the critical solution temperature, T(c). The sign of the slope of the line indicated that manganese dioxide dissolved endothermically, while aluminum oxide dissolved exothermically. When the temperature was within 1 K of T(c), however, the local van't Hoff slope, ( partial differential ln s/ partial differential(1/T)), appeared to diverge toward negative infinity in the case of manganese dioxide, while it appeared to diverge toward positive infinity in the case of aluminum oxide. By applying the principle of critical point universality to the critical behavior of thermodynamic derivatives, we have shown that the existence of a divergence in ( partial differential ln s/ partial differential(1/T)) as T approaches T(c) is to be expected when the dissolution reaction of the oxide involves both components of the solvent. Application of the Gibbs-Helmholtz equation showed that the sign of the divergence must be opposite to the sign of the heat of solution. The experimental solubility data sets for both manganese dioxide and aluminum oxide are in good agreement with these theoretical assertions.

SELECTION OF CITATIONS
SEARCH DETAIL
...