Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 93: 103317, 2019 12.
Article in English | MEDLINE | ID: mdl-31586714

ABSTRACT

An operationally simple Biginelli protocol was employed for the synthesis of new C6-carbon based aryl α-haloacrylamide-linked dihydropyrimidinone derivatives. The synthesized compounds were appraised for their in vitro antiproliferative potential against a selected panel of human cancer cell lines especially MCF-7 (human breast cancer), MDA-MB-231 (human breast cancer), HCT-116 (human colon cancer), HCT-15 (human colorectal adenocarcinoma), HT-29 (human colon adenocarcinoma) and DU145 (human prostate cancer) along with normal lung fibroblasts (HFL-1). Preferably, compounds containing α-haloacrylamide (10a-g) functionality were found to exhibit most significant cytotoxicity (IC50 value 0.54 ±â€¯0.12 to 8.35 ±â€¯0.82 µM) against the listed cancer cell lines, particularly towards breast cancer cell lines MCF-7 and MDA-MB-231 (IC50 value 0.54 ±â€¯0.12 to 3.70 ±â€¯0.24 µM). In the seam of synthesized compounds, compound 10f exhibited potent antiproliferative activity against breast cancer cell lines namely MCF-7 (IC50 value 0.54 ±â€¯0.12 µM) and MDA-MB-231 (IC50 value 1.18 ±â€¯0.32 µM). Further to understand the underlying apoptosis mechanisms, different staining techniques such as AO/EB, DCFDA, and DAPI staining were performed. To know the extent of apoptosis and loss of mitochondrial membrane potential in MCF-7 cell lines, annexin V-FITC/PI and JC-1 were performed. Cell cycle analysis revealed that compound 10f arrested the cells at G2/M phase in a dose-dependent manner. The compound 10f also found to exhibit significant inhibition of tubulin polymerization (IC50 of 6.91 ±â€¯0.43 µM) with microtubule destabilizing properties. Molecular docking studies also revealed that compound 10f efficiently interacted with critical catalytically active residues Ser178, Val238, and Val318 of the α/ß-tubulin by a hydrogen bond.


Subject(s)
Drug Design , Pyrimidinones/chemistry , Tubulin Modulators/chemical synthesis , Tubulin/chemistry , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , Membrane Potential, Mitochondrial/drug effects , Molecular Docking Simulation , Protein Structure, Tertiary , Pyrimidinones/metabolism , Pyrimidinones/pharmacology , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/metabolism , Tubulin Modulators/pharmacology
2.
Arch Pharm (Weinheim) ; 352(10): e1900063, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31411362

ABSTRACT

A series of novel pyrazolyl 2-aminopyrimidine derivatives (7a-t) were designed based on scaffold hopping techniques, synthesized and biologically evaluated for their HSP90 inhibition and anticancer activity. Several compounds exhibited potent HSP90 inhibition with IC50 values less than that of the reference standard 17-AAG (1.25 µM). The most potent compound 7t displayed excellent HSP90 inhibition with an IC50 of 20 nM and in vitro antiproliferative potential against three cancer cell lines (IC50 < 5 µM). 7t also induced dose dependent degradation of client proteins (pHER2 and pERK1/2) in Western blot analysis. Several structural features of 7p-t oriented the molecules to retain all the essential binding interactions with HSP90, as observed by rationalized docking studies. Therefore, the para-nitrophenyl ring on the central pyrazole ring along with the 2-amino group on the pyrimidine ring are the crucial features in the development of novel HSP90 inhibitors based on this scaffold for targeted anticancer therapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Drug Design , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship
3.
Bone ; 81: 217-227, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26187197

ABSTRACT

INTRODUCTION: Muscle is strongly related to cortical bone architecture in children; however, the relationship between muscle volume and trabecular bone architecture is poorly studied. The aim of this study was to determine if muscle volume is related to trabecular bone architecture in children and if the relationship is different than the relationship between muscle volume and cortical bone architecture. MATERIALS AND METHODS: Forty typically developing children (20 boys and 20 girls; 6 to 12y) were included in the study. Measures of trabecular bone architecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the distal femur, cortical bone architecture [cortical volume, total volume, section modulus (Z) and polar moment of inertia (J)] in the midfemur, muscle volume in the midthigh and femur length were assessed using magnetic resonance imaging. Total physical activity and moderate-to-vigorous physical activity were assessed using an accelerometer-based activity monitor worn around the waist for four days. Calcium intake was assessed using diet records. Relationships among the measures were tested using multiple linear regression analysis. RESULTS: Muscle volume was moderately-to-strongly related to measures of trabecular bone architecture [appBV/TV (r=0.81), appTb.N (r=0.53), appTb.Th (r=0.67), appTb.Sp (r=-0.71); all p<0.001] but more strongly related to measures of cortical bone architecture [cortical volume (r=0.96), total volume (r=0.94), Z (r=0.94) and J (r=0.92; all p<0.001)]. Similar relationships were observed between femur length and measures of trabecular (p<0.01) and cortical (p<0.001) bone architecture. Sex, physical activity and calcium intake were not related to any measure of bone architecture (p>0.05). Because muscle volume and femur length were strongly related (r=0.91, p<0.001), muscle volume was scaled for femur length (muscle volume/femur length(2.77)). When muscle volume/femur length(2.77) was included in a regression model with femur length, sex, physical activity and calcium intake, muscle volume/femur length(2.77) was a significant predictor of appBV/TV, appTb.Th and appTb.Sp (partial r=0.44 to 0.49, p<0.05) and all measures of cortical bone architecture (partial r=0.47 to 0.54; p<0.01). CONCLUSIONS: The findings suggest that muscle volume in the midthigh is related to trabecular bone architecture in the distal femur of typically developing children. The relationship is weaker than the relationship between muscle volume in the midthigh and cortical bone architecture in the midfemur, but the discrepancy is driven, in large part, by the greater dependence of cortical bone architecture measures on femur length.


Subject(s)
Bone Density/physiology , Femur/growth & development , Muscle Strength/physiology , Muscle, Skeletal/growth & development , Child , Cross-Sectional Studies , Female , Humans , Male , Motor Activity/physiology , Organ Size/physiology
4.
Bone ; 49(5): 1067-72, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21851868

ABSTRACT

INTRODUCTION: Sex differences in trabecular bone microarchitecture have been reported in adults and adolescents, but studies in children are lacking. The primary aim of this study was to determine if there are sex differences in magnetic resonance imaging (MRI)-based measures of trabecular bone microarchitecture at the distal femur of children. MATERIALS AND METHODS: Pre and early pubertal boys (n=23) and girls (n=20) between the 5th and 95th percentiles for height, body mass and BMI were studied. Apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th), trabecular separation (appTb.Sp) and a composite measure of trabecular bone microarchitecture (TBMcom) were assessed at the lateral aspect of the distal femur using MRI. Areal bone mineral density (aBMD), bone mineral content (BMC) and bone area were assessed at the distal femur using dual-energy X-ray absorptiometry (DXA). Tanner staging was used to assess pubertal development. Physical activity was assessed using an accelerometry-based activity monitor. Calcium intake was assessed using diet records. RESULTS: There were no sex differences in age, height, femur length, body mass, physical activity or calcium intake (all P>0.05). There were no sex differences in any MRI-based measure of trabecular bone microarchitecture. Consistent with the MRI-based measures, there were no differences in aBMD, BMC or bone area from DXA at the distal femur (P>0.05). appBV/TV, appTb.N, appTb.Th, appTb.Sp and TBMcom were also moderately to strongly related to aBMD (r=0.73, 0.63, 0.51, -0.74 and 0.61, respectively, p<0.001) and BMC (r=0.84, 0.63, 0.66, -0.80 and 0.77, respectively, P<0.001). CONCLUSIONS: The findings suggest that there are no differences in measures of trabecular bone microarchitecture at the distal femur of pre and early pubertal boys and girls who are similar in size, physical activity and calcium intake. Future studies with larger sample sizes that cover all pubertal stages are needed to determine if sex differences in trabecular bone microarchitecture emerge at the distal femur and other weight bearing bone sites.


Subject(s)
Bone and Bones/anatomy & histology , Magnetic Resonance Imaging/methods , Puberty , Sex Factors , Absorptiometry, Photon , Body Mass Index , Bone Density , Child , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...